메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Efficient supervised sparse analysis and synthesis operators

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE PROCESSING;

EID: 84898973361     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (53)

References (26)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad, and A. Bruckstein. k-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Proc., 54(11):4311-4322, 2006.
    • (2006) IEEE Trans. Sig. Proc. , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • March
    • A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Img. Sci., 2:183-202, March 2009.
    • (2009) SIAM J. Img. Sci. , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 3
    • 84905159578 scopus 로고    scopus 로고
    • Multiple-instrument polyphonic music transcription using a convolutive probabilistic model
    • E. Benetos and S. Dixon. Multiple-instrument polyphonic music transcription using a convolutive probabilistic model. In Sound and Music Computing Conference, pages 19-24, 2011.
    • (2011) Sound and Music Computing Conference , pp. 19-24
    • Benetos, E.1    Dixon, S.2
  • 5
    • 84898964086 scopus 로고    scopus 로고
    • Learning l1-based analysis and synthesis sparsity priors using bi-level optimization
    • H. Bischof, Y. Chen, and T. Pock. Learning l1-based analysis and synthesis sparsity priors using bi-level optimization. NIPS workshop, 2012.
    • (2012) NIPS Workshop
    • Bischof, H.1    Chen, Y.2    Pock, T.3
  • 9
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. on Im. Proc., 54(12):3736-3745, 2006.
    • (2006) IEEE Trans. on Im. Proc. , vol.54 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 10
    • 77955826141 scopus 로고    scopus 로고
    • Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle
    • V. Emiya, R. Badeau, and B. David. Multipitch estimation of piano sounds using a new probabilistic spectral smoothness principle. IEEE Trans. Audio, Speech, and Language Proc., 18(6):1643-1654, 2010.
    • (2010) IEEE Trans. Audio, Speech, and Language Proc. , vol.18 , Issue.6 , pp. 1643-1654
    • Emiya, V.1    Badeau, R.2    David, B.3
  • 11
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML, pages 399-406, 2010.
    • (2010) ICML , pp. 399-406
    • Gregor, K.1    Lecun, Y.2
  • 12
    • 84857419890 scopus 로고    scopus 로고
    • Task-driven dictionary learning
    • J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Trans. PAMI, 34(4):791-804, 2012.
    • (2012) IEEE Trans. PAMI , vol.34 , Issue.4 , pp. 791-804
    • Mairal, J.1    Bach, F.2    Ponce, J.3
  • 13
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • J. Mairal, M. Elad, and G. Sapiro. Sparse representation for color image restoration. IEEE Trans. on Im. Proc., 17(1):53-69, 2008.
    • (2008) IEEE Trans. on Im. Proc. , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 15
    • 57649169327 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Catholic University of Louvain, Louvain-la-Neuve, Belgium
    • Y. Nesterov. Gradient methods for minimizing composite objective function. In CORE. Catholic University of Louvain, Louvain-la-Neuve, Belgium, 2007.
    • (2007) CORE
    • Nesterov, Y.1
  • 16
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B.A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 17
    • 84872979573 scopus 로고    scopus 로고
    • Learning analysis sparsity priors
    • G. Peyré and J. Fadili. Learning analysis sparsity priors. SAMPTA'11, 2011.
    • (2011) SAMPTA'11
    • Peyré, G.1    Fadili, J.2
  • 19
    • 44049111982 scopus 로고
    • Nonlinear total variation-based noise removal algorithms
    • L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation-based noise removal algorithms. Physica D, 60(1-4):259-268, 1992.
    • (1992) Physica D , vol.60 , Issue.1-4 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 21
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Royal Stat. Society: Series B, 58(1):267-288, 1996.
    • (1996) J. Royal Stat. Society: Series B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 24
    • 51949105499 scopus 로고    scopus 로고
    • Image super-resolution as sparse representation of raw image patches
    • IEEE
    • J. Yang, JohnW., T. Huang, and Y. Ma. Image super-resolution as sparse representation of raw image patches. In Proc. CVPR, pages 1-8. IEEE, 2008.
    • (2008) Proc. CVPR , pp. 1-8
    • Yang, J.1    John, W.2    Huang, T.3    Ma, Y.4
  • 26
    • 84860189704 scopus 로고    scopus 로고
    • Solving inverse problems with piecewise linear estimators: From gaussian mixture models to structured sparsity
    • G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: from gaussian mixture models to structured sparsity. IEEE Trans. Im. Proc., 21(5):2481-2499, 2012.
    • (2012) IEEE Trans. Im. Proc. , vol.21 , Issue.5 , pp. 2481-2499
    • Yu, G.1    Sapiro, G.2    Mallat, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.