메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1000-1008

Differentially private subspace clustering

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DATA PRIVACY; INFORMATION SCIENCE; LEARNING SYSTEMS;

EID: 84965127234     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (76)

References (34)
  • 4
    • 84965121330 scopus 로고    scopus 로고
    • Near-optimal algorithms for differentially private principal components
    • K. Chaudhuri, A. Sarwate, and K. Sinha. Near-optimal algorithms for differentially private principal components. In NIPS, 2012.
    • (2012) NIPS
    • Chaudhuri, K.1    Sarwate, A.2    Sinha, K.3
  • 8
    • 33746086554 scopus 로고    scopus 로고
    • Calibrating noise to sensitivity in private data analysis
    • C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
    • (2006) TCC
    • Dwork, C.1    McSherry, F.2    Nissim, K.3    Smith, A.4
  • 10
    • 84904360138 scopus 로고    scopus 로고
    • Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis
    • C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis. In STOC, 2014.
    • (2014) STOC
    • Dwork, C.1    Talwar, K.2    Thakurta, A.3    Zhang, L.4
  • 12
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering
    • D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In SODA, 2013.
    • (2013) SODA
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 15
    • 0042440805 scopus 로고    scopus 로고
    • Clustering appearances of objects under varying illumination conditions
    • J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering appearances of objects under varying illumination conditions. In CVPR, 2003.
    • (2003) CVPR
    • Ho, J.1    Yang, M.-H.2    Lim, J.3    Lee, K.-C.4    Kriegman, D.5
  • 16
    • 77950649162 scopus 로고    scopus 로고
    • Simulation of the matrix bingham-conmises-fisher distribution, with applications to multivariate and relational data
    • P. Hoff. Simulation of the matrix bingham-conmises-fisher distribution, with applications to multivariate and relational data. Journal of Computational and Graphical Statistics, 18(2):438-456, 2009.
    • (2009) Journal of Computational and Graphical Statistics , vol.18 , Issue.2 , pp. 438-456
    • Hoff, P.1
  • 18
    • 46749128577 scopus 로고    scopus 로고
    • Mechanism design via differential privacy
    • F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, 2007.
    • (2007) FOCS
    • McSherry, F.1    Talwar, K.2
  • 19
    • 84894550914 scopus 로고    scopus 로고
    • Subspace clustering of high-dimensional data: A predictive approach
    • B. McWilliams and G. Montana. Subspace clustering of high-dimensional data: a predictive approach. Data Mining and Knowledge Discovery, 28(3):736-772, 2014.
    • (2014) Data Mining and Knowledge Discovery , vol.28 , Issue.3 , pp. 736-772
    • McWilliams, B.1    Montana, G.2
  • 21
    • 80052870941 scopus 로고    scopus 로고
    • Graph connectivity in sparse subspace clustering
    • B. Nasihatkon and R. Hartley. Graph connectivity in sparse subspace clustering. In CVPR, 2011.
    • (2011) CVPR
    • Nasihatkon, B.1    Hartley, R.2
  • 22
    • 35448955271 scopus 로고    scopus 로고
    • Smooth sensitivity and sampling in private data analysis
    • K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, 2007.
    • (2007) STOC
    • Nissim, K.1    Raskhodnikova, S.2    Smith, A.3
  • 23
    • 35348899361 scopus 로고    scopus 로고
    • The effectiveness of Lloyd-type methods for the k-means problem
    • R. Ostrovksy, Y. Rabani, L. Schulman, and C. Swamy. The effectiveness of Lloyd-type methods for the k-means problem. In FOCS, 2006.
    • (2006) FOCS
    • Ostrovksy, R.1    Rabani, Y.2    Schulman, L.3    Swamy, C.4
  • 24
    • 84884476031 scopus 로고    scopus 로고
    • A geometric analysis of subspace clustering with outliers
    • M. Soltanolkotabi, E. J. Candes, et al. A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 40(4):2195-2238, 2012.
    • (2012) The Annals of Statistics , vol.40 , Issue.4 , pp. 2195-2238
    • Soltanolkotabi, M.1    Candes, E.J.2
  • 27
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principle component anlyzers
    • M. Tipping and C. Bishop. Mixtures of probabilistic principle component anlyzers. Neural computation, 11(2):443-482, 1999.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 29
    • 84969779036 scopus 로고    scopus 로고
    • A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data
    • Y. Wang, Y.-X. Wang, and A. Singh. A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data. In ICML, 2015.
    • (2015) ICML
    • Wang, Y.1    Wang, Y.-X.2    Singh, A.3
  • 30
    • 84969822819 scopus 로고    scopus 로고
    • DP-space: Bayesian nonparametric subspace clustering with small-variance asymptotic analysis
    • Y. Wang and J. Zhu. DP-space: Bayesian nonparametric subspace clustering with small-variance asymptotic analysis. In ICML, 2015.
    • (2015) ICML
    • Wang, Y.1    Zhu, J.2
  • 31
    • 84969939834 scopus 로고    scopus 로고
    • Privacy for free: Posterior sampling and stochastic gradient monte carlo
    • Y.-X. Wang, S. Fienberg, and A. Smola. Privacy for free: Posterior sampling and stochastic gradient monte carlo. In ICML, 2015.
    • (2015) ICML
    • Wang, Y.-X.1    Fienberg, S.2    Smola, A.3
  • 32
    • 84897476987 scopus 로고    scopus 로고
    • Noisy sparse subspace clustering
    • Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. In ICML, pages 89-97, 2013.
    • (2013) ICML , pp. 89-97
    • Wang, Y.-X.1    Xu, H.2
  • 34
    • 84965171472 scopus 로고    scopus 로고
    • Bayesian inference on principal component analysis using reversible jump markov chain monte carlo
    • Z. Zhang, K. L. Chan, J. Kwok, and D.-Y. Yeung. Bayesian inference on principal component analysis using reversible jump markov chain monte carlo. In AAAI, 2004.
    • (2004) AAAI
    • Zhang, Z.1    Chan, K.L.2    Kwok, J.3    Yeung, D.-Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.