-
4
-
-
84965121330
-
Near-optimal algorithms for differentially private principal components
-
K. Chaudhuri, A. Sarwate, and K. Sinha. Near-optimal algorithms for differentially private principal components. In NIPS, 2012.
-
(2012)
NIPS
-
-
Chaudhuri, K.1
Sarwate, A.2
Sinha, K.3
-
5
-
-
84904293395
-
Clustering partially observed graphs via convex optimization
-
Y. Chen, A. Jalali, S. Sanghavi, and H. Xu. Clustering partially observed graphs via convex optimization. The Journal of Machine Learning Research, 15(1):2213-2238, 2014.
-
(2014)
The Journal of Machine Learning Research
, vol.15
, Issue.1
, pp. 2213-2238
-
-
Chen, Y.1
Jalali, A.2
Sanghavi, S.3
Xu, H.4
-
6
-
-
84910080986
-
Robust and private Bayesian inference
-
Springer
-
C. Dimitrakakis, B. Nelson, A. Mitrokotsa, and B. I. Rubinstein. Robust and private bayesian inference. In Algorithmic Learning Theory, pages 291-305. Springer, 2014.
-
(2014)
Algorithmic Learning Theory
, pp. 291-305
-
-
Dimitrakakis, C.1
Nelson, B.2
Mitrokotsa, A.3
Rubinstein, B.I.4
-
7
-
-
57049085430
-
Our data, ourselves: Privacy via distributed noise generation
-
C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, 2006.
-
(2006)
EUROCRYPT
-
-
Dwork, C.1
Kenthapadi, K.2
McSherry, F.3
Mironov, I.4
Naor, M.5
-
8
-
-
33746086554
-
Calibrating noise to sensitivity in private data analysis
-
C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data analysis. In TCC, 2006.
-
(2006)
TCC
-
-
Dwork, C.1
McSherry, F.2
Nissim, K.3
Smith, A.4
-
10
-
-
84904360138
-
Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis
-
C. Dwork, K. Talwar, A. Thakurta, and L. Zhang. Analyze Gauss: Optimal bounds for privacy-preserving principal component analysis. In STOC, 2014.
-
(2014)
STOC
-
-
Dwork, C.1
Talwar, K.2
Thakurta, A.3
Zhang, L.4
-
12
-
-
84876035763
-
Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering
-
D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In SODA, 2013.
-
(2013)
SODA
-
-
Feldman, D.1
Schmidt, M.2
Sohler, C.3
-
13
-
-
0035363672
-
From few to many: Illumination cone models for face recognition under variable lighting and pose
-
A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):643-660, 2001.
-
(2001)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.23
, Issue.6
, pp. 643-660
-
-
Georghiades, A.1
Belhumeur, P.2
Kriegman, D.3
-
15
-
-
0042440805
-
Clustering appearances of objects under varying illumination conditions
-
J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman. Clustering appearances of objects under varying illumination conditions. In CVPR, 2003.
-
(2003)
CVPR
-
-
Ho, J.1
Yang, M.-H.2
Lim, J.3
Lee, K.-C.4
Kriegman, D.5
-
16
-
-
77950649162
-
Simulation of the matrix bingham-conmises-fisher distribution, with applications to multivariate and relational data
-
P. Hoff. Simulation of the matrix bingham-conmises-fisher distribution, with applications to multivariate and relational data. Journal of Computational and Graphical Statistics, 18(2):438-456, 2009.
-
(2009)
Journal of Computational and Graphical Statistics
, vol.18
, Issue.2
, pp. 438-456
-
-
Hoff, P.1
-
17
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
G. Liu, Z. Lin, S. Yan, J. Sun, Y. Ma, and Y. Yu. Robust recovery of subspace structures by low-rank representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):171-184, 2012.
-
(2012)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Ma, Y.5
Yu, Y.6
-
18
-
-
46749128577
-
Mechanism design via differential privacy
-
F. McSherry and K. Talwar. Mechanism design via differential privacy. In FOCS, 2007.
-
(2007)
FOCS
-
-
McSherry, F.1
Talwar, K.2
-
19
-
-
84894550914
-
Subspace clustering of high-dimensional data: A predictive approach
-
B. McWilliams and G. Montana. Subspace clustering of high-dimensional data: a predictive approach. Data Mining and Knowledge Discovery, 28(3):736-772, 2014.
-
(2014)
Data Mining and Knowledge Discovery
, vol.28
, Issue.3
, pp. 736-772
-
-
McWilliams, B.1
Montana, G.2
-
21
-
-
80052870941
-
Graph connectivity in sparse subspace clustering
-
B. Nasihatkon and R. Hartley. Graph connectivity in sparse subspace clustering. In CVPR, 2011.
-
(2011)
CVPR
-
-
Nasihatkon, B.1
Hartley, R.2
-
22
-
-
35448955271
-
Smooth sensitivity and sampling in private data analysis
-
K. Nissim, S. Raskhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis. In STOC, 2007.
-
(2007)
STOC
-
-
Nissim, K.1
Raskhodnikova, S.2
Smith, A.3
-
23
-
-
35348899361
-
The effectiveness of Lloyd-type methods for the k-means problem
-
R. Ostrovksy, Y. Rabani, L. Schulman, and C. Swamy. The effectiveness of Lloyd-type methods for the k-means problem. In FOCS, 2006.
-
(2006)
FOCS
-
-
Ostrovksy, R.1
Rabani, Y.2
Schulman, L.3
Swamy, C.4
-
24
-
-
84884476031
-
A geometric analysis of subspace clustering with outliers
-
M. Soltanolkotabi, E. J. Candes, et al. A geometric analysis of subspace clustering with outliers. The Annals of Statistics, 40(4):2195-2238, 2012.
-
(2012)
The Annals of Statistics
, vol.40
, Issue.4
, pp. 2195-2238
-
-
Soltanolkotabi, M.1
Candes, E.J.2
-
25
-
-
84901725652
-
Robust subspace clustering
-
M. Soltanolkotabi, E. Elhamifa, and E. Candes. Robust subspace clustering. The Annals of Statistics, 42(2):669-699, 2014.
-
(2014)
The Annals of Statistics
, vol.42
, Issue.2
, pp. 669-699
-
-
Soltanolkotabi, M.1
Elhamifa, E.2
Candes, E.3
-
26
-
-
84965183088
-
-
arXiv
-
D. Su, J. Cao, N. Li, E. Bertino, and H. Jin. Differentially private k-means clustering. arXiv, 2015.
-
(2015)
Differentially Private K-means Clustering
-
-
Su, D.1
Cao, J.2
Li, N.3
Bertino, E.4
Jin, H.5
-
27
-
-
0033556788
-
Mixtures of probabilistic principle component anlyzers
-
M. Tipping and C. Bishop. Mixtures of probabilistic principle component anlyzers. Neural computation, 11(2):443-482, 1999.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.1
Bishop, C.2
-
29
-
-
84969779036
-
A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data
-
Y. Wang, Y.-X. Wang, and A. Singh. A deterministic analysis of noisy sparse subspace clustering for dimensionality-reduced data. In ICML, 2015.
-
(2015)
ICML
-
-
Wang, Y.1
Wang, Y.-X.2
Singh, A.3
-
30
-
-
84969822819
-
DP-space: Bayesian nonparametric subspace clustering with small-variance asymptotic analysis
-
Y. Wang and J. Zhu. DP-space: Bayesian nonparametric subspace clustering with small-variance asymptotic analysis. In ICML, 2015.
-
(2015)
ICML
-
-
Wang, Y.1
Zhu, J.2
-
31
-
-
84969939834
-
Privacy for free: Posterior sampling and stochastic gradient monte carlo
-
Y.-X. Wang, S. Fienberg, and A. Smola. Privacy for free: Posterior sampling and stochastic gradient monte carlo. In ICML, 2015.
-
(2015)
ICML
-
-
Wang, Y.-X.1
Fienberg, S.2
Smola, A.3
-
32
-
-
84897476987
-
Noisy sparse subspace clustering
-
Y.-X. Wang and H. Xu. Noisy sparse subspace clustering. In ICML, pages 89-97, 2013.
-
(2013)
ICML
, pp. 89-97
-
-
Wang, Y.-X.1
Xu, H.2
-
34
-
-
84965171472
-
Bayesian inference on principal component analysis using reversible jump markov chain monte carlo
-
Z. Zhang, K. L. Chan, J. Kwok, and D.-Y. Yeung. Bayesian inference on principal component analysis using reversible jump markov chain monte carlo. In AAAI, 2004.
-
(2004)
AAAI
-
-
Zhang, Z.1
Chan, K.L.2
Kwok, J.3
Yeung, D.-Y.4
|