-
1
-
-
85162387277
-
Distributed delayed stochastic optimization
-
A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. NIPS, 2011.
-
(2011)
NIPS
-
-
Agarwal, A.1
Duchi, J.C.2
-
2
-
-
84906673146
-
Revisiting asynchronous linear solvers: Provable convergence rate through randomization
-
H. Avron, A. Druinsky, and A. Gupta. Revisiting asynchronous linear solvers: Provable convergence rate through randomization. IPDPS, 2014.
-
(2014)
IPDPS
-
-
Avron, H.1
Druinsky, A.2
Gupta, A.3
-
3
-
-
0142166851
-
A neural probabilistic language model
-
Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. The Journal of Machine Learning Research, 3:1137-1155, 2003.
-
(2003)
The Journal of Machine Learning Research
, vol.3
, pp. 1137-1155
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Janvin, C.4
-
5
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep networks. NIPS, 2012.
-
(2012)
NIPS
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
6
-
-
84857527621
-
Optimal distributed online prediction using mini-batches
-
O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using mini-batches. Journal of Machine Learning Research, 13(1):165-202, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 165-202
-
-
Dekel, O.1
Gilad-Bachrach, R.2
Shamir, O.3
Xiao, L.4
-
9
-
-
84892854517
-
Stochastic first- and zeroth-order methods for nonconvex stochastic programming
-
S. Ghadimi and G. Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.
-
(2013)
SIAM Journal on Optimization
, vol.23
, Issue.4
, pp. 2341-2368
-
-
Ghadimi, S.1
Lan, G.2
-
11
-
-
84913555165
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
12
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
Tech. Rep
-
A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Computer Science Department, University of Toronto, Tech. Rep, 1(4):7, 2009.
-
(2009)
Computer Science Department, University of Toronto
, vol.1
, Issue.4
, pp. 7
-
-
Krizhevsky, A.1
Hinton, G.2
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
84937960701
-
Parameter server for distributed machine learning
-
M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter server for distributed machine learning. Big Learning NIPS Workshop, 2013.
-
(2013)
Big Learning NIPS Workshop
-
-
Li, M.1
Zhou, L.2
Yang, Z.3
Li, A.4
Xia, F.5
Andersen, D.G.6
Smola, A.7
-
15
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. OSDI, 2014a.
-
(2014)
OSDI
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
16
-
-
84937889303
-
Communication efficient distributed machine learning with the parameter server
-
M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine learning with the parameter server. NIPS, 2014b.
-
(2014)
NIPS
-
-
Li, M.1
Andersen, D.G.2
Smola, A.J.3
Yu, K.4
-
18
-
-
84919932688
-
An asynchronous parallel stochastic coordinate descent algorithm
-
J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate descent algorithm. ICML, 2014a.
-
(2014)
ICML
-
-
Liu, J.1
Wright, S.J.2
Ré, C.3
Bittorf, V.4
Sridhar, S.5
-
20
-
-
84965135004
-
-
arXiv preprint arXiv:1507.06970
-
H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. I. Jordan. Perturbed iterate analysis for asynchronous stochastic optimization. arXiv preprint arXiv:1507.06970, 2015.
-
(2015)
Perturbed Iterate Analysis for Asynchronous Stochastic Optimization
-
-
Mania, H.1
Pan, X.2
Papailiopoulos, D.3
Recht, B.4
Ramchandran, K.5
Jordan, M.I.6
-
22
-
-
70450197241
-
Robust stochastic approximation approach to stochastic programming
-
A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574-1609, 2009.
-
(2009)
SIAM Journal on Optimization
, vol.19
, Issue.4
, pp. 1574-1609
-
-
Nemirovski, A.1
Juditsky, A.2
Lan, G.3
Shapiro, A.4
-
23
-
-
85162467517
-
Hogwild: A lock-free approach to parallelizing stochastic gradient descent
-
F. Niu, B. Recht, C. Re, and S. Wright. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. NIPS, 2011.
-
(2011)
NIPS
-
-
Niu, F.1
Recht, B.2
Re, C.3
Wright, S.4
-
24
-
-
84965122596
-
GPU asynchronous stochastic gradient descent to speed up neural network training
-
T. Paine, H. Jin, J. Yang, Z. Lin, and T. Huang. Gpu asynchronous stochastic gradient descent to speed up neural network training. NIPS, 2013.
-
(2013)
NIPS
-
-
Paine, T.1
Jin, H.2
Yang, J.3
Lin, Z.4
Huang, T.5
-
25
-
-
84908893558
-
Gasgd: Stochastic gradient descent for distributed asynchronous matrix completion via graph partitioning
-
F. Petroni and L. Querzoni. Gasgd: stochastic gradient descent for distributed asynchronous matrix completion via graph partitioning. ACM Conference on Recommender systems, 2014.
-
(2014)
ACM Conference on Recommender Systems
-
-
Petroni, F.1
Querzoni, L.2
-
26
-
-
84905092486
-
An approximate, efficient LP solver for lp rounding
-
S. Sridhar, S. Wright, C. Re, J. Liu, V. Bittorf, and C. Zhang. An approximate, efficient LP solver for lp rounding. NIPS, 2013.
-
(2013)
NIPS
-
-
Sridhar, S.1
Wright, S.2
Re, C.3
Liu, J.4
Bittorf, V.5
Zhang, C.6
-
28
-
-
84965182483
-
Scaling up stochastic dual coordinate ascent
-
K. Tran, S. Hosseini, L. Xiao, T. Finley, and M. Bilenko. Scaling up stochastic dual coordinate ascent. ICML, 2015.
-
(2015)
ICML
-
-
Tran, K.1
Hosseini, S.2
Xiao, L.3
Finley, T.4
Bilenko, M.5
-
29
-
-
84965151095
-
-
arXiv preprint arXiv:1312.0193
-
H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. Dhillon. Nomad: Non-locking, stochastic multi-machine algorithm for asynchronous and decentralized matrix completion. arXiv preprint arXiv:1312.0193, 2013.
-
(2013)
Nomad: Non-locking, Stochastic Multi-machine Algorithm for Asynchronous and Decentralized Matrix Completion
-
-
Yun, H.1
Yu, H.-F.2
Hsieh, C.-J.3
Vishwanathan, S.4
Dhillon, I.5
-
30
-
-
84919796967
-
Asynchronous distributed ADMM for consensus optimization
-
R. Zhang and J. Kwok. Asynchronous distributed ADMM for consensus optimization. ICML, 2014.
-
(2014)
ICML
-
-
Zhang, R.1
Kwok, J.2
|