-
1
-
-
84880575747
-
Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases
-
[1] Hu, F.B., Resolved: there is sufficient scientific evidence that decreasing sugar-sweetened beverage consumption will reduce the prevalence of obesity and obesity-related diseases. Obes. Rev. 14:8 (2013), 606–619.
-
(2013)
Obes. Rev.
, vol.14
, Issue.8
, pp. 606-619
-
-
Hu, F.B.1
-
2
-
-
84907964491
-
Trends in dietary quality among adults in the United States, 1999 through 2010
-
[2] Wang, D.D., et al. Trends in dietary quality among adults in the United States, 1999 through 2010. JAMA Intern. Med. 174:10 (2014), 1587–1595.
-
(2014)
JAMA Intern. Med.
, vol.174
, Issue.10
, pp. 1587-1595
-
-
Wang, D.D.1
-
3
-
-
72449146204
-
Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation
-
[3] Watts, A.G., Donovan, C.M., Sweet talk in the brain: glucosensing, neural networks, and hypoglycemic counterregulation. Front. Neuroendocrinol. 31 (2009), 32–43.
-
(2009)
Front. Neuroendocrinol.
, vol.31
, pp. 32-43
-
-
Watts, A.G.1
Donovan, C.M.2
-
4
-
-
0019742903
-
The glucose/fatty acid cycle and physical exhaustion
-
[4] Newsholme, E.A., The glucose/fatty acid cycle and physical exhaustion. CIBA Found. Symp. 82 (1981), 89–101.
-
(1981)
CIBA Found. Symp.
, vol.82
, pp. 89-101
-
-
Newsholme, E.A.1
-
5
-
-
70349984438
-
Common sense about taste: from mammals to insects
-
[5] Yarmolinsky, D.A., Zuker, C.S., Ryba, N.J., Common sense about taste: from mammals to insects. Cell 139:2 (2009), 234–244.
-
(2009)
Cell
, vol.139
, Issue.2
, pp. 234-244
-
-
Yarmolinsky, D.A.1
Zuker, C.S.2
Ryba, N.J.3
-
6
-
-
15044353688
-
The receptors and coding logic for bitter taste
-
[6] Mueller, K.L., et al. The receptors and coding logic for bitter taste. Nature 434:7030 (2005), 225–229.
-
(2005)
Nature
, vol.434
, Issue.7030
, pp. 225-229
-
-
Mueller, K.L.1
-
7
-
-
0014607209
-
Intragastric reinforcement effect
-
[7] Holman, G.L., Intragastric reinforcement effect. J. Comp. Physiol. Psychol. 69 (1968), 432–441.
-
(1968)
J. Comp. Physiol. Psychol.
, vol.69
, pp. 432-441
-
-
Holman, G.L.1
-
8
-
-
0035147463
-
Post-ingestive positive controls of ingestive behavior
-
[8] Sclafani, A., Post-ingestive positive controls of ingestive behavior. Appetite 36:1 (2001), 79–83.
-
(2001)
Appetite
, vol.36
, Issue.1
, pp. 79-83
-
-
Sclafani, A.1
-
9
-
-
40849083517
-
Food reward in the absence of taste receptor signaling
-
[9] de Araujo, I.E., et al. Food reward in the absence of taste receptor signaling. Neuron 57:6 (2008), 930–941.
-
(2008)
Neuron
, vol.57
, Issue.6
, pp. 930-941
-
-
de Araujo, I.E.1
-
10
-
-
84959164602
-
Separate circuitries encode the hedonic and nutritional values of sugar
-
[10] Tellez, L.A., et al. Separate circuitries encode the hedonic and nutritional values of sugar. Nat. Neurosci. 19:3 (2016), 465–470.
-
(2016)
Nat. Neurosci.
, vol.19
, Issue.3
, pp. 465-470
-
-
Tellez, L.A.1
-
11
-
-
84884326139
-
Independent circuits in the basal ganglia for the evaluation and selection of actions
-
[11] Stephenson-Jones, M., et al. Independent circuits in the basal ganglia for the evaluation and selection of actions. Proc. Natl. Acad. Sci. U. S. A. 110:38 (2013), E3670–E3679.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, Issue.38
, pp. E3670-E3679
-
-
Stephenson-Jones, M.1
-
12
-
-
27644454882
-
Neural systems of reinforcement for drug addiction: from actions to habits to compulsion
-
[12] Everitt, B.J., Robbins, T.W., Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8:11 (2005), 1481–1489.
-
(2005)
Nat. Neurosci.
, vol.8
, Issue.11
, pp. 1481-1489
-
-
Everitt, B.J.1
Robbins, T.W.2
-
13
-
-
79959869606
-
Modulation of striatal projection systems by dopamine
-
[13] Gerfen, C.R., Surmeier, D.J., Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34 (2011), 441–466.
-
(2011)
Annu. Rev. Neurosci.
, vol.34
, pp. 441-466
-
-
Gerfen, C.R.1
Surmeier, D.J.2
-
14
-
-
84887513621
-
The evolutionary origin of the vertebrate basal ganglia and its role in action selection
-
[14] Grillner, S., Robertson, B., Stephenson-Jones, M., The evolutionary origin of the vertebrate basal ganglia and its role in action selection. J. Physiol. 591:Pt. 22 (2013), 5425–5431.
-
(2013)
J. Physiol.
, vol.591
, pp. 5425-5431
-
-
Grillner, S.1
Robertson, B.2
Stephenson-Jones, M.3
-
15
-
-
53949118376
-
Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks
-
[15] Yin, H.H., Ostlund, S.B., Balleine, B.W., Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks. Eur. J. Neurosci. 28:8 (2008), 1437–1448.
-
(2008)
Eur. J. Neurosci.
, vol.28
, Issue.8
, pp. 1437-1448
-
-
Yin, H.H.1
Ostlund, S.B.2
Balleine, B.W.3
-
16
-
-
34547663508
-
Dopaminergic mechanisms in actions and habits
-
[16] Wickens, J.R., et al. Dopaminergic mechanisms in actions and habits. J. Neurosci. 27:31 (2007), 8181–8183.
-
(2007)
J. Neurosci.
, vol.27
, Issue.31
, pp. 8181-8183
-
-
Wickens, J.R.1
-
17
-
-
47249163297
-
Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice
-
[17] Palmiter, R.D., Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann. N. Y. Acad. Sci. 1129 (2008), 35–46.
-
(2008)
Ann. N. Y. Acad. Sci.
, vol.1129
, pp. 35-46
-
-
Palmiter, R.D.1
-
18
-
-
84906098741
-
An update on the connections of the ventral mesencephalic dopaminergic complex
-
[18] Yetnikoff, L., et al. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 282C (2014), 23–48.
-
(2014)
Neuroscience
, vol.282C
, pp. 23-48
-
-
Yetnikoff, L.1
-
19
-
-
77953495960
-
Nutrient selection in the absence of taste receptor signaling
-
[19] Ren, X., et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30 (2010), 8012–8023.
-
(2010)
J. Neurosci.
, vol.30
, pp. 8012-8023
-
-
Ren, X.1
-
20
-
-
84877134461
-
Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey
-
[20] Ericsson, J., et al. Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. J. Neurosci. 33:18 (2013), 8045–8054.
-
(2013)
J. Neurosci.
, vol.33
, Issue.18
, pp. 8045-8054
-
-
Ericsson, J.1
-
21
-
-
84874562095
-
Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine
-
e57054
-
[21] Planert, H., Berger, T.K., Silberberg, G., Membrane properties of striatal direct and indirect pathway neurons in mouse and rat slices and their modulation by dopamine. PLoS One, 8(3), 2013, e57054.
-
(2013)
PLoS One
, vol.8
, Issue.3
-
-
Planert, H.1
Berger, T.K.2
Silberberg, G.3
-
22
-
-
84861545384
-
Distinct roles for direct and indirect pathway striatal neurons in reinforcement
-
[22] Kravitz, A.V., Tye, L.D., Kreitzer, A.C., Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15:6 (2012), 816–818.
-
(2012)
Nat. Neurosci.
, vol.15
, Issue.6
, pp. 816-818
-
-
Kravitz, A.V.1
Tye, L.D.2
Kreitzer, A.C.3
-
23
-
-
77957938882
-
Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward
-
[23] Lobo, M.K., et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330:6002 (2010), 385–390.
-
(2010)
Science
, vol.330
, Issue.6002
, pp. 385-390
-
-
Lobo, M.K.1
-
24
-
-
79960991372
-
Taste-independent detection of the caloric content of sugar in Drosophila
-
[24] Dus, M., et al. Taste-independent detection of the caloric content of sugar in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 108:28 (2011), 11644–11649.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, Issue.28
, pp. 11644-11649
-
-
Dus, M.1
-
25
-
-
84871461174
-
Layered reward signalling through octopamine and dopamine in Drosophila
-
[25] Burke, C.J., et al. Layered reward signalling through octopamine and dopamine in Drosophila. Nature, 2012.
-
(2012)
Nature
-
-
Burke, C.J.1
-
26
-
-
84926421888
-
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila
-
[26] Huetteroth, W., et al. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr. Biol. 25:6 (2015), 751–758.
-
(2015)
Curr. Biol.
, vol.25
, Issue.6
, pp. 751-758
-
-
Huetteroth, W.1
-
27
-
-
84924551560
-
Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila
-
[27] Musso, P.Y., Tchenio, P., Preat, T., Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila. Cell Rep. 10:7 (2015), 1023–1031.
-
(2015)
Cell Rep.
, vol.10
, Issue.7
, pp. 1023-1031
-
-
Musso, P.Y.1
Tchenio, P.2
Preat, T.3
-
28
-
-
84920973061
-
Distinct dopamine neurons mediate reward signals for short- and long-term memories
-
[28] Yamagata, N., et al. Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc. Natl. Acad. Sci. U. S. A. 112:2 (2015), 578–583.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, Issue.2
, pp. 578-583
-
-
Yamagata, N.1
-
29
-
-
84955301089
-
-
Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab.,. (in press).
-
[29] Han, W., et al., Striatal dopamine links gastrointestinal rerouting to altered sweet appetite. Cell Metab., 2016. (in press).
-
(2016)
-
-
Han, W.1
-
30
-
-
84887615088
-
Glucose utilization rates regulate intake levels of artificial sweeteners
-
[30] Tellez, L.A., et al. Glucose utilization rates regulate intake levels of artificial sweeteners. J. Physiol. 591:Pt. 22 (2013), 5727–5744.
-
(2013)
J. Physiol.
, vol.591
, pp. 5727-5744
-
-
Tellez, L.A.1
-
31
-
-
0022482761
-
Role of the basal ganglia in the initiation of saccadic eye movements
-
[31] Wurtz, R.H., Hikosaka, O., Role of the basal ganglia in the initiation of saccadic eye movements. Prog. Brain Res. 64 (1986), 175–190.
-
(1986)
Prog. Brain Res.
, vol.64
, pp. 175-190
-
-
Wurtz, R.H.1
Hikosaka, O.2
-
32
-
-
0026793065
-
Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat
-
[32] Shammah-Lagnado, S.J., Costa, M.S., Ricardo, J.A., Afferent connections of the parvocellular reticular formation: a horseradish peroxidase study in the rat. Neuroscience 50:2 (1992), 403–425.
-
(1992)
Neuroscience
, vol.50
, Issue.2
, pp. 403-425
-
-
Shammah-Lagnado, S.J.1
Costa, M.S.2
Ricardo, J.A.3
-
33
-
-
84858040834
-
Dopaminergic modulation of sucrose acceptance behavior in Drosophila
-
[33] Marella, S., Mann, K., Scott, K., Dopaminergic modulation of sucrose acceptance behavior in Drosophila. Neuron 73:5 (2012), 941–950.
-
(2012)
Neuron
, vol.73
, Issue.5
, pp. 941-950
-
-
Marella, S.1
Mann, K.2
Scott, K.3
-
34
-
-
74249110599
-
Post-oral infusion sites that support glucose-conditioned flavor preferences in rats
-
[34] Ackroff, K., Yiin, Y.M., Sclafani, A., Post-oral infusion sites that support glucose-conditioned flavor preferences in rats. Physiol. Behav. 99 (2010), 402–411.
-
(2010)
Physiol. Behav.
, vol.99
, pp. 402-411
-
-
Ackroff, K.1
Yiin, Y.M.2
Sclafani, A.3
-
35
-
-
84860441219
-
The gut-brain dopamine axis: a regulatory system of caloric intake
-
[35] de Araujo, I.E., et al. The gut-brain dopamine axis: a regulatory system of caloric intake. Physiol. Behav. 106 (2012), 394–399.
-
(2012)
Physiol. Behav.
, vol.106
, pp. 394-399
-
-
de Araujo, I.E.1
-
36
-
-
84884918776
-
Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs
-
[36] Zukerman, S., Ackroff, K., Sclafani, A., Post-oral appetite stimulation by sugars and nonmetabolizable sugar analogs. Am. J. Phys. Regul. Integr. Comp. Phys. 305:7 (2013), R840–R853.
-
(2013)
Am. J. Phys. Regul. Integr. Comp. Phys.
, vol.305
, Issue.7
, pp. R840-R853
-
-
Zukerman, S.1
Ackroff, K.2
Sclafani, A.3
-
37
-
-
84905046886
-
Activation of hindbrain neurons is mediated by portal-mesenteric vein glucosensors during slow-onset hypoglycemia
-
[37] Bohland, M., et al. Activation of hindbrain neurons is mediated by portal-mesenteric vein glucosensors during slow-onset hypoglycemia. Diabetes 63:8 (2014), 2866–2875.
-
(2014)
Diabetes
, vol.63
, Issue.8
, pp. 2866-2875
-
-
Bohland, M.1
-
38
-
-
84887824523
-
Portal glucose influences the sensory, cortical and reward systems in rats
-
[38] Delaere, F., et al. Portal glucose influences the sensory, cortical and reward systems in rats. Eur. J. Neurosci. 38:10 (2013), 3476–3486.
-
(2013)
Eur. J. Neurosci.
, vol.38
, Issue.10
, pp. 3476-3486
-
-
Delaere, F.1
-
39
-
-
84937514728
-
Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila
-
[39] Dus, M., et al. Nutrient sensor in the brain directs the action of the brain-gut axis in Drosophila. Neuron 87:1 (2015), 139–151.
-
(2015)
Neuron
, vol.87
, Issue.1
, pp. 139-151
-
-
Dus, M.1
|