메뉴 건너뛰기




Volumn 21, Issue 5, 2016, Pages

Wavelet-based hydrological time series forecasting

Author keywords

Artificial intelligence modeling; Hydrological forecasting; Hydrological time series analysis; Statistical significance; Temporal scale; Wavelet analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; UNCERTAINTY ANALYSIS; WAVELET ANALYSIS;

EID: 84964575877     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0001347     Document Type: Article
Times cited : (31)

References (27)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski, J., and Sun, K. (2010). "Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds". J. Hydrol., 390(1-2), 85-91
    • (2010) J. Hydrol , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 2
    • 84890235995 scopus 로고    scopus 로고
    • Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models
    • Belayneh, A., Adamowski, J., Khalil, B., and Ozga-Zielinski, B. (2014). "Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models". J. Hydrol., 508, 418-429
    • (2014) J. Hydrol , vol.508 , pp. 418-429
    • Belayneh, A.1    Adamowski, J.2    Khalil, B.3    Ozga-Zielinski, B.4
  • 3
    • 33646407315 scopus 로고    scopus 로고
    • Discrete wavelet analysis to assess long term trends in geomagnetic activity
    • de Artigas, M. Z., Elias, A. G., and de Campra, P. F. (2006). "Discrete wavelet analysis to assess long term trends in geomagnetic activity". Phys. Chem. Earth., 31(1-3), 77-80
    • (2006) Phys. Chem. Earth , vol.31 , Issue.1-3 , pp. 77-80
    • de Artigas, M.Z.1    Elias, A.G.2    de Campra, P.F.3
  • 4
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho, D. H. (1995). "De-noising by soft-thresholding". IEEE T. Inform. Theory, 41(3), 613-627
    • (1995) IEEE T. Inform. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.H.1
  • 5
    • 71649094330 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
    • Kisi, O. (2009). "Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting". Hydrol. Process., 23(25), 3583-3597
    • (2009) Hydrol. Process , vol.23 , Issue.25 , pp. 3583-3597
    • Kisi, O.1
  • 6
    • 0035426007 scopus 로고    scopus 로고
    • The case for probabilistic forecasting in hydrology
    • Krzysztofowicz, R. (2001). "The case for probabilistic forecasting in hydrology". J. Hydrol., 249(1-4), 2-9
    • (2001) J. Hydrol , vol.249 , Issue.1-4 , pp. 2-9
    • Krzysztofowicz, R.1
  • 7
    • 36048951385 scopus 로고    scopus 로고
    • Wavelet analysis of the annual discharge records of the world's largest rivers
    • Labat, D. (2008). "Wavelet analysis of the annual discharge records of the world's largest rivers". Adv. Water Resour., 31(1), 109-117
    • (2008) Adv. Water Resour , vol.31 , Issue.1 , pp. 109-117
    • Labat, D.1
  • 8
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran, R., and Khosa, R. (2012). "Comparative study of different wavelets for hydrologic forecasting". Comput. Geosci., 46, 284-295
    • (2012) Comput. Geosci , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 9
    • 84870234964 scopus 로고    scopus 로고
    • Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008)
    • Nalley, D., Adamowski, J., and Khalil, B. (2012). "Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008)". J. Hydrol., 475, 204-228
    • (2012) J. Hydrol , vol.475 , pp. 204-228
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3
  • 10
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: A review
    • Nourani, V., Baghanam, A. H., Adamowski, J., and Kisi, O. (2014). "Applications of hybrid wavelet-artificial intelligence models in hydrology: A review". J. Hydrol., 514, 358-377
    • (2014) J. Hydrol , vol.514 , pp. 358-377
    • Nourani, V.1    Baghanam, A.H.2    Adamowski, J.3    Kisi, O.4
  • 11
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modelling rainfall-runoff process
    • Nourani, V., Kisi, O., and Komasi, M. (2011). "Two hybrid artificial intelligence approaches for modelling rainfall-runoff process". J. Hydrol., 402(1-2), 41-59
    • (2011) J. Hydrol , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 13
    • 84887548611 scopus 로고    scopus 로고
    • Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
    • Rathinasamy, M., Adamowski, J., and Khosa, R. (2013). "Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method". J. Hydrol., 507, 186-200
    • (2013) J. Hydrol , vol.507 , pp. 186-200
    • Rathinasamy, M.1    Adamowski, J.2    Khosa, R.3
  • 14
    • 84865525837 scopus 로고    scopus 로고
    • A practical guide to discrete wavelet decomposition of hydrologic time series
    • Sang, Y. F. (2012). "A practical guide to discrete wavelet decomposition of hydrologic time series". Water Resour. Manage., 26(11), 3345-3365
    • (2012) Water Resour. Manage , vol.26 , Issue.11 , pp. 3345-3365
    • Sang, Y.F.1
  • 15
    • 84876984605 scopus 로고    scopus 로고
    • Improved wavelet modeling framework for hydrologic time series forecasting
    • Sang, Y. F. (2013). "Improved wavelet modeling framework for hydrologic time series forecasting". Water Resour. Manage., 27(8), 2807-2821
    • (2013) Water Resour. Manage , vol.27 , Issue.8 , pp. 2807-2821
    • Sang, Y.F.1
  • 16
    • 84933277709 scopus 로고    scopus 로고
    • Gradation of complexity and predictability of hydrological processes
    • Sang, Y. F., Singh, V. P., Wen, J., and Liu, C. M. (2015). "Gradation of complexity and predictability of hydrological processes". J. Geophys. Res. Atmos., 120(11), 5334-5343
    • (2015) J. Geophys. Res. Atmos , vol.120 , Issue.11 , pp. 5334-5343
    • Sang, Y.F.1    Singh, V.P.2    Wen, J.3    Liu, C.M.4
  • 17
    • 84873283964 scopus 로고    scopus 로고
    • Improved continuous wavelet analysis on the variation of hydrologic time series' dominant period
    • Sang, Y. F., Wang, D., Wu, J. C., Zhu, Q. P., and Wang, L. (2013). "Improved continuous wavelet analysis on the variation of hydrologic time series' dominant period". Hydrol. Sci. J., 58(1), 118-132
    • (2013) Hydrol. Sci. J , vol.58 , Issue.1 , pp. 118-132
    • Sang, Y.F.1    Wang, D.2    Wu, J.C.3    Zhu, Q.P.4    Wang, L.5
  • 18
    • 34748833473 scopus 로고    scopus 로고
    • What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology
    • Schaefli, B., Maraun, D., and Holschneider, M. (2007). "What drives high flow events in the Swiss Alps? Recent developments in wavelet spectral analysis and their application to hydrology". Adv. Water Resour., 30(12), 2511-2525
    • (2007) Adv. Water Resour , vol.30 , Issue.12 , pp. 2511-2525
    • Schaefli, B.1    Maraun, D.2    Holschneider, M.3
  • 19
    • 84900000488 scopus 로고    scopus 로고
    • Comparative study of different wavelet based neural network models for rainfall-runoff modeling
    • Shoaib, M., Shamseldin, A. Y., and Melville, B. W. (2014). "Comparative study of different wavelet based neural network models for rainfall-runoff modeling". J. Hydrol., 515, 47-58
    • (2014) J. Hydrol , vol.515 , pp. 47-58
    • Shoaib, M.1    Shamseldin, A.Y.2    Melville, B.W.3
  • 20
    • 84861211172 scopus 로고    scopus 로고
    • Wavelet-ANN model for flood events
    • Singh, R. M. (2011). "Wavelet-ANN model for flood events". Adv. Intel. Software Comput., 131, 165-175
    • (2011) Adv. Intel. Software Comput , vol.131 , pp. 165-175
    • Singh, R.M.1
  • 22
    • 84885070735 scopus 로고    scopus 로고
    • Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models
    • Tiwari, M., and Adamowski, J. (2013). "Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap-neural network models". Water Resour. Res., 49(10), 6486-6507
    • (2013) Water Resour. Res , vol.49 , Issue.10 , pp. 6486-6507
    • Tiwari, M.1    Adamowski, J.2
  • 23
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K., and Chatterjee, C. (2010). "Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach". J. Hydrol., 394(3-4), 458-470
    • (2010) J. Hydrol , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 24
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • Torrence, C., and Compo, G. P. (1998). "A practical guide to wavelet analysis". B. Am. Meteorol. Soc., 79(1), 61-78
    • (1998) B. Am. Meteorol. Soc , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 26
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang, W. S., and Ding, J. (2003). "Wavelet network model and its application to the predication of hydrology". Nature Sci., 1(1), 67-71
    • (2003) Nature Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.S.1    Ding, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.