-
1
-
-
33845338724
-
Projections of global mortality and burden of disease from 2002 to 2030
-
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3: e442.
-
(2006)
PLoS Med.
, vol.3
, pp. e442
-
-
Mathers, C.D.1
Loncar, D.2
-
3
-
-
33746851956
-
Tumor metastasis: mechanistic insights and clinical challenges
-
Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006; 12: 895-904.
-
(2006)
Nat Med.
, vol.12
, pp. 895-904
-
-
Steeg, P.S.1
-
4
-
-
33751252276
-
Cancer metastasis: building a framework
-
Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006; 127: 679-95.
-
(2006)
Cell.
, vol.127
, pp. 679-695
-
-
Gupta, G.P.1
Massague, J.2
-
5
-
-
3042844293
-
Cancer immunotherapy: a treatment for the masses
-
Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science. 2004; 305: 200-5.
-
(2004)
Science.
, vol.305
, pp. 200-205
-
-
Blattman, J.N.1
Greenberg, P.D.2
-
6
-
-
84255197842
-
Cancer immunotherapy comes of age
-
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011; 480: 480-9.
-
(2011)
Nature.
, vol.480
, pp. 480-489
-
-
Mellman, I.1
Coukos, G.2
Dranoff, G.3
-
7
-
-
79956077563
-
T cell exhaustion
-
Wherry EJ. T cell exhaustion. Nat Immunol. 2011; 12: 492-9.
-
(2011)
Nat Immunol.
, vol.12
, pp. 492-499
-
-
Wherry, E.J.1
-
8
-
-
84858766182
-
The blockade of immune checkpoints in cancer immunotherapy
-
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12: 252-64.
-
(2012)
Nat Rev Cancer.
, vol.12
, pp. 252-264
-
-
Pardoll, D.M.1
-
9
-
-
77954801079
-
Improved survival with ipilimumab in patients with metastatic melanoma
-
Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363: 711-23.
-
(2010)
N Engl J Med.
, vol.363
, pp. 711-723
-
-
Hodi, F.S.1
O'Day, S.J.2
McDermott, D.F.3
-
10
-
-
84858760109
-
Combining immunotherapy and targeted therapies in cancer treatment
-
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer. 2012; 12: 237-51.
-
(2012)
Nat Rev Cancer.
, vol.12
, pp. 237-251
-
-
Vanneman, M.1
Dranoff, G.2
-
11
-
-
84862859820
-
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
-
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366: 2443-54.
-
(2012)
N Engl J Med.
, vol.366
, pp. 2443-2454
-
-
Topalian, S.L.1
Hodi, F.S.2
Brahmer, J.R.3
-
12
-
-
84879759020
-
Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma
-
Hamid O, Robert C, Daud A, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013; 369: 134-44.
-
(2013)
N Engl J Med.
, vol.369
, pp. 134-144
-
-
Hamid, O.1
Robert, C.2
Daud, A.3
-
13
-
-
84870714194
-
Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies
-
Yuan A, Wu J, Tang X, et al. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J Pharm Sci. 2013; 102: 6-28.
-
(2013)
J Pharm Sci.
, vol.102
, pp. 6-28
-
-
Yuan, A.1
Wu, J.2
Tang, X.3
-
14
-
-
84930822809
-
Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience
-
Sato K, Nagaya T, Choyke PL, et al. Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: preclinical experience. Theranostics. 2015; 5: 698-709.
-
(2015)
Theranostics.
, vol.5
, pp. 698-709
-
-
Sato, K.1
Nagaya, T.2
Choyke, P.L.3
-
15
-
-
84961291875
-
Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer
-
Sato K, Hanaoka H, Watanabe R, et al. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther. 2015; 14: 141-50.
-
(2015)
Mol Cancer Ther.
, vol.14
, pp. 141-150
-
-
Sato, K.1
Hanaoka, H.2
Watanabe, R.3
-
16
-
-
84856096764
-
Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules
-
Mitsunaga M, Ogawa M, Kosaka N, et al. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med. 2011; 17: 1685-91.
-
(2011)
Nat Med.
, vol.17
, pp. 1685-1691
-
-
Mitsunaga, M.1
Ogawa, M.2
Kosaka, N.3
-
17
-
-
84883194936
-
Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model
-
Nakajima T, Sano K, Choyke PL, et al. Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics. 2013; 3: 357-65.
-
(2013)
Theranostics.
, vol.3
, pp. 357-365
-
-
Nakajima, T.1
Sano, K.2
Choyke, P.L.3
-
18
-
-
84927934867
-
A near-infrared phthalocyanine dye-labeled agent for integrin alphavbeta6-targeted theranostics of pancreatic cancer
-
Gao D, Gao L, Zhang C, et al. A near-infrared phthalocyanine dye-labeled agent for integrin alphavbeta6-targeted theranostics of pancreatic cancer. Biomaterials. 2015; 53: 229-38.
-
(2015)
Biomaterials.
, vol.53
, pp. 229-238
-
-
Gao, D.1
Gao, L.2
Zhang, C.3
-
19
-
-
0037240489
-
The immunological consequences of photodynamic treatment of cancer, a literature review
-
van Duijnhoven FH, Aalbers RI, Rovers JP, et al. The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology. 2003; 207: 105-13.
-
(2003)
Immunobiology.
, vol.207
, pp. 105-113
-
-
van Duijnhoven, F.H.1
Aalbers, R.I.2
Rovers, J.P.3
-
21
-
-
60849131263
-
In-vitro internalization and in-vivo tumor uptake of anti-EGFR monoclonal antibody LA22 in A549 lung cancer cells and animal model
-
Liu Z, Yu Z, He W, et al. In-vitro internalization and in-vivo tumor uptake of anti-EGFR monoclonal antibody LA22 in A549 lung cancer cells and animal model. Cancer Biother Radiopharm. 2009; 24: 15-24.
-
(2009)
Cancer Biother Radiopharm.
, vol.24
, pp. 15-24
-
-
Liu, Z.1
Yu, Z.2
He, W.3
-
22
-
-
84958632112
-
Molecular imaging of post-Src-inhibition tumor signatures for guiding dasatinib combination therapy
-
Gao L, Liu H, Sun X, et al. Molecular imaging of post-Src-inhibition tumor signatures for guiding dasatinib combination therapy. J Nucl Med. 2016; 57: 321-326.
-
(2016)
J Nucl Med.
, vol.57
, pp. 321-326
-
-
Gao, L.1
Liu, H.2
Sun, X.3
-
23
-
-
84901301880
-
Early assessment of tumor response to gefitinib treatment by noninvasive optical imaging of tumor vascular endothelial growth factor expression in animal models
-
Liu Z, Sun X, Liu H, et al. Early assessment of tumor response to gefitinib treatment by noninvasive optical imaging of tumor vascular endothelial growth factor expression in animal models. J Nucl Med. 2014; 55: 818-23.
-
(2014)
J Nucl Med.
, vol.55
, pp. 818-823
-
-
Liu, Z.1
Sun, X.2
Liu, H.3
-
24
-
-
84978906983
-
Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model
-
Zhang C, Gao L, Cai Y, et al. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials. 2016; 84: 1-12.
-
(2016)
Biomaterials.
, vol.84
, pp. 1-12
-
-
Zhang, C.1
Gao, L.2
Cai, Y.3
-
25
-
-
77749279776
-
PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors
-
Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010; 107: 4275-80.
-
(2010)
Proc Natl Acad Sci U S A.
, vol.107
, pp. 4275-4280
-
-
Curran, M.A.1
Montalvo, W.2
Yagita, H.3
-
26
-
-
84934874184
-
Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer
-
Sun X, Gao D, Gao L, et al. Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics. 2015; 5: 597-608.
-
(2015)
Theranostics.
, vol.5
, pp. 597-608
-
-
Sun, X.1
Gao, D.2
Gao, L.3
-
27
-
-
84903220832
-
Integrin αvβ6-targeted SPECT imaging for pancreatic cancer detection
-
Liu Z, Liu H, Ma T, et al. Integrin αvβ6-targeted SPECT imaging for pancreatic cancer detection. J Nucl Med. 2014; 55: 989-94.
-
(2014)
J Nucl Med.
, vol.55
, pp. 989-994
-
-
Liu, Z.1
Liu, H.2
Ma, T.3
-
28
-
-
70249086983
-
Defining the role of integrin avβ6 in cancer
-
Bandyopadhyay A, Raghavan S. Defining the role of integrin avβ6 in cancer. Curr Drug Targets. 2009; 10: 645-52.
-
(2009)
Curr Drug Targets.
, vol.10
, pp. 645-652
-
-
Bandyopadhyay, A.1
Raghavan, S.2
-
29
-
-
0345440140
-
Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation
-
Berchtold S, Muhl-Zurbes P, Heufler C, et al. Cloning, recombinant expression and biochemical characterization of the murine CD83 molecule which is specifically upregulated during dendritic cell maturation. FEBS Lett. 1999; 461: 211-6.
-
(1999)
FEBS Lett.
, vol.461
, pp. 211-216
-
-
Berchtold, S.1
Muhl-Zurbes, P.2
Heufler, C.3
-
30
-
-
0034872151
-
IL-1 beta induces dendritic cells to produce IL-12
-
Wesa AK, Galy A. IL-1 beta induces dendritic cells to produce IL-12. Int Immunol. 2001; 13: 1053-61.
-
(2001)
Int Immunol.
, vol.13
, pp. 1053-1061
-
-
Wesa, A.K.1
Galy, A.2
-
31
-
-
84855873376
-
Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy
-
Waitz R, Solomon SB, Petre EN, et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res. 2012; 72: 430-9.
-
(2012)
Cancer Res.
, vol.72
, pp. 430-439
-
-
Waitz, R.1
Solomon, S.B.2
Petre, E.N.3
-
32
-
-
84920136189
-
Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis
-
Wang C, Xu L, Liang C, et al. Immunological responses triggered by photothermal therapy with carbon nanotubes in combination with anti-CTLA-4 therapy to inhibit cancer metastasis. Adv Mater. 2014; 26: 8154-62.
-
(2014)
Adv Mater.
, vol.26
, pp. 8154-8162
-
-
Wang, C.1
Xu, L.2
Liang, C.3
-
33
-
-
84929366910
-
TGFβ is a master regulator of radiation therapy-induced antitumor immunity
-
Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFβ is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015; 75: 2232-42.
-
(2015)
Cancer Res.
, vol.75
, pp. 2232-2242
-
-
Vanpouille-Box, C.1
Diamond, J.M.2
Pilones, K.A.3
-
35
-
-
44949199187
-
Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice
-
Inoue Y, Izawa K, Kiryu S, et al. Diet and abdominal autofluorescence detected by in vivo fluorescence imaging of living mice. Mol Imaging. 2008; 7: 21-7.
-
(2008)
Mol Imaging.
, vol.7
, pp. 21-27
-
-
Inoue, Y.1
Izawa, K.2
Kiryu, S.3
-
36
-
-
84879777241
-
Nivolumab plus ipilimumab in advanced melanoma
-
Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369: 122-33.
-
(2013)
N Engl J Med.
, vol.369
, pp. 122-133
-
-
Wolchok, J.D.1
Kluger, H.2
Callahan, M.K.3
-
37
-
-
84926525215
-
Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer
-
Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015; 520: 373-7.
-
(2015)
Nature.
, vol.520
, pp. 373-377
-
-
Twyman-Saint Victor, C.1
Rech, A.J.2
Maity, A.3
|