메뉴 건너뛰기




Volumn 41, Issue 1, 2013, Pages 196-220

On the definition of a confounder

Author keywords

Causal diagrams; Causal inference; Confounder; Counterfactual; Minimal sufficiency

Indexed keywords


EID: 84879205757     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1058     Document Type: Article
Times cited : (208)

References (41)
  • 1
    • 0003016998 scopus 로고
    • Issues in the analysis of selectivity bias
    • (E. Stromsdorfer and G. Farkas, eds.) Sage, San Francisco
    • BARNOW, B. S., CAIN, G. G. and GOLDBERGER, A. S. (1980). Issues in the analysis of selectivity bias. In Evaluation Studies (E. Stromsdorfer and G. Farkas, eds.) 5. Sage, San Francisco.
    • (1980) Evaluation Studies , vol.5
    • Barnow, B.S.1    Cain, G.G.2    Goldberger, A.S.3
  • 4
    • 0036679398 scopus 로고    scopus 로고
    • Influence diagrams for causal modeling and inference
    • DAWID, A. P. (2002). Influence diagrams for causal modeling and inference. Int. Statist. Rev. 70 161-189.
    • (2002) Int. Statist. Rev. , vol.70 , pp. 161-189
    • Dawid, A.P.1
  • 6
    • 0036005413 scopus 로고    scopus 로고
    • Conditions for non-confounding and collapsibility without knowledge of completely constructed causal diagrams
    • MR1894389
    • GENG, Z. and LI, G. (2002). Conditions for non-confounding and collapsibility without knowledge of completely constructed causal diagrams. Scand. J. Stat. 29 169-181. MR1894389
    • (2002) Scand. J. Stat. , vol.29 , pp. 169-181
    • Geng, Z.1    Li, G.2
  • 7
    • 0035589990 scopus 로고    scopus 로고
    • Confounding, homogeneity and collapsibility for causal effects in epidemiologic studies
    • MR1820001
    • GENG, Z., GUO, J., LAU, T. S. and FUNG, W.-K. (2001). Confounding, homogeneity and collapsibility for causal effects in epidemiologic studies. Statist. Sinica 11 63-75. MR1820001
    • (2001) Statist. Sinica , vol.11 , pp. 63-75
    • Geng, Z.1    Guo, J.2    Lau, T.S.3    Fung, W.-K.4
  • 8
    • 43049143690 scopus 로고    scopus 로고
    • Causal diagrams
    • 3rd ed. (K. J. Rothman, S. Greenland and T. L. Lash, eds.). Lippincott Williams and Wilkins, Philadelphia, PA
    • GLYMOUR, M. M. and GREENLAND, S. (2008). Causal diagrams. In Modern Epidemiology, 3rd ed. (K. J. Rothman, S. Greenland and T. L. Lash, eds.) 12. Lippincott Williams and Wilkins, Philadelphia, PA.
    • (2008) Modern Epidemiology , vol.12
    • Glymour, M.M.1    Greenland, S.2
  • 9
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causalmodels: Classical confounding versus collider-stratification bias
    • GREENLAND, S. (2003). Quantifying biases in causalmodels: Classical confounding versus collider-stratification bias. Epidemiology 14 300-306.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 11
    • 0032924944 scopus 로고    scopus 로고
    • Causal diagrams for epidemiologic research
    • GREENLAND, S., PEARL, J. and ROBINS, J. M. (1999). Causal diagrams for epidemiologic research. Epidemiology 10 37-48.
    • (1999) Epidemiology , vol.10 , pp. 37-48
    • Greenland, S.1    Pearl, J.2    Robins, J.M.3
  • 12
    • 67651138906 scopus 로고    scopus 로고
    • Causal diagrams
    • (S. Boslaugh, ed.). Sage, Thousand Oaks, CA
    • GREENLAND, S. and PEARL, J. (2007). Causal diagrams. In Encyclopedia of Epidemiology (S. Boslaugh, ed.) 149-156. Sage, Thousand Oaks, CA.
    • (2007) Encyclopedia of Epidemiology , pp. 149-156
    • Greenland, S.1    Pearl, J.2
  • 13
    • 82055194473 scopus 로고    scopus 로고
    • Adjustments and their consequences - Collapsibility analysis using graphical models
    • GREENLAND, S. and PEARL, J. (2011). Adjustments and their consequences - collapsibility analysis using graphical models. International Statistical Review 79 401-426.
    • (2011) International Statistical Review , vol.79 , pp. 401-426
    • Greenland, S.1    Pearl, J.2
  • 14
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • GREENLAND, S. and ROBINS, J. M. (1986). Identifiability, exchangeability, and epidemiological confounding. Int. J. Epidemiol. 15 413-419.
    • (1986) Int. J. Epidemiol. , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 15
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • GREENLAND, S., ROBINS, J. M. and PEARL, J. (1999). Confounding and collapsibility in causal inference. Statist. Sci. 14 29-46.
    • (1999) Statist. Sci. , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 16
    • 70349130001 scopus 로고    scopus 로고
    • Identifiability, exchangeability and confounding revisited
    • GREENLAND, S. and ROBINS, J. M. (2009). Identifiability, exchangeability and confounding revisited. Epidemiol. Perspect. Innov. 6 4.
    • (2009) Epidemiol. Perspect. Innov. , vol.6 , pp. 4
    • Greenland, S.1    Robins, J.M.2
  • 18
    • 0037080447 scopus 로고    scopus 로고
    • Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology
    • HERNÁN, M. A., HERNÁNEZ-DÍAZ, S.,WERLER, M. M. and MITCHELL, A. A. (2002). Causal knowledge as a prerequisite for confounding evaluation: An application to birth defects epidemiology. American Journal of Epidemiology 155 176-184.
    • (2002) American Journal of Epidemiology , vol.155 , pp. 176-184
    • Hernán, M.A.1    Hernánez-Díaz, S.2    Werler, M.M.3    Mitchell, A.A.4
  • 19
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • IMBENS, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: A review. Rev. Econom. Statist. 86 4-29.
    • (2004) Rev. Econom. Statist. , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 22
    • 0016268663 scopus 로고
    • Confounding and effect modification
    • MIETTINEN, O. S. (1974). Confounding and effect modification. Am. J. Epidemiol. 100 350-353.
    • (1974) Am. J. Epidemiol. , vol.100 , pp. 350-353
    • Miettinen, O.S.1
  • 23
    • 0017046714 scopus 로고
    • Stratification by a multivariate confounder score
    • MIETTINEN, O. S. (1976). Stratification by a multivariate confounder score. Am. J. Epidemiol. 104 609-620.
    • (1976) Am. J. Epidemiol. , vol.104 , pp. 609-620
    • Miettinen, O.S.1
  • 24
    • 0019416737 scopus 로고
    • Confounding: Essence and detection
    • MIETTINEN, O. S. and COOK, E. F. (1981). Confounding: Essence and detection. Am. J. Epidemiol. 114 593-603.
    • (1981) Am. J. Epidemiol. , vol.114 , pp. 593-603
    • Miettinen, O.S.1    Cook, E.F.2
  • 25
    • 79952351829 scopus 로고    scopus 로고
    • History of the modern epidemiological concept of confounding
    • MORABIA, A. (2011). History of the modern epidemiological concept of confounding. J. Epidemiol. Community Health 65 297-300.
    • (2011) J. Epidemiol. Community Health , vol.65 , pp. 297-300
    • Morabia, A.1
  • 26
    • 0001058696 scopus 로고
    • Sur les applications de la thar des probabilities aux experiences Agaricales: Essay des principle
    • Excerpts reprinted (1990) in English (D. Dabrowska and T. Speed, trans.)
    • NEYMAN, J.(1923). Sur les applications de la thar des probabilities aux experiences Agaricales: Essay des principle. Excerpts reprinted (1990) in English (D. Dabrowska and T. Speed, trans.). Statist. Sci. 5 463-472.
    • (1923) Statist. Sci. , vol.5 , pp. 463-472
    • Neyman, J.1
  • 27
    • 82055193052 scopus 로고    scopus 로고
    • On the nondifferential misclassification of a binary confounder
    • OGBURN, E. L. and VANDERWEELE, T. J. (2012). On the nondifferential misclassification of a binary confounder. Epidemiology 23 433-439.
    • (2012) Epidemiology , vol.23 , pp. 433-439
    • Ogburn, E.L.1    Vanderweele, T.J.2
  • 28
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • MR1380809
    • PEARL, J. (1995). Causal diagrams for empirical research. Biometrika 82 669-710. MR1380809
    • (1995) Biometrika , vol.82 , pp. 669-710
    • Pearl, J.1
  • 30
    • 0000608132 scopus 로고
    • Estimation of the time-dependent accelerated failure time model in the presence of confounding factors
    • MR1185134
    • ROBINS, J. (1992). Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika 79 321-334. MR1185134
    • (1992) Biometrika , vol.79 , pp. 321-334
    • Robins, J.1
  • 31
    • 0001815275 scopus 로고    scopus 로고
    • Causal inference from complex longitudinal data
    • Latent Variable Modeling and Applications to Causality (Los Angeles, CA, 1994) (M. Berkane, ed.). Springer, New York. MR1601279
    • ROBINS, J. M. (1997). Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality (Los Angeles, CA, 1994) (M. Berkane, ed.). Lecture Notes in Statistics 120 69-117. Springer, New York. MR1601279
    • (1997) Lecture Notes in Statistics , vol.120 , pp. 69-117
    • Robins, J.M.1
  • 32
    • 0022569935 scopus 로고
    • The role of model selection in causal inference from nonexperimental data
    • ROBINS, J. M. and GREENLAND, S. (1986). The role of model selection in causal inference from nonexperimental data. Am. J. Epidemiol. 123 392-402.
    • (1986) Am. J. Epidemiol. , vol.123 , pp. 392-402
    • Robins, J.M.1    Greenland, S.2
  • 33
    • 0023541714 scopus 로고
    • The foundations of confounding in epidemiology
    • MR0922790
    • ROBINS, J. M. and MORGENSTERN, H. (1987). The foundations of confounding in epidemiology. Comput. Math. Appl. 14 869-916. MR0922790
    • (1987) Comput. Math. Appl. , vol.14 , pp. 869-916
    • Robins, J.M.1    Morgenstern, H.2
  • 34
    • 80053470925 scopus 로고    scopus 로고
    • Alternative graphical causal models and the identification of direct effects
    • (P. E. Shrout, K. M. Keyes and K. Ornstein, eds.). Oxford Univ. Press, New York
    • ROBINS, J. M. and RICHARDSON, T. S. (2010). Alternative graphical causal models and the identification of direct effects. In Causality and Psychopathology: Finding the Determinants of Disorders and Their Cures (P. E. Shrout, K. M. Keyes and K. Ornstein, eds.) 103-158. Oxford Univ. Press, New York.
    • (2010) Causality and Psychopathology: Finding the Determinants of Disorders and Their Cures , pp. 103-158
    • Robins, J.M.1    Richardson, T.S.2
  • 35
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • MR0742974
    • ROSENBAUM, P. R. and RUBIN, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41-55. MR0742974
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 36
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • MR0472152
    • RUBIN, D. B. (1978). Bayesian inference for causal effects: The role of randomization. Ann. Statist. 6 34-58. MR0472152
    • (1978) Ann. Statist. , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 37
    • 38249019870 scopus 로고
    • Formal modes of statistical inference for causal effects
    • RUBIN, D. B. (1990). Formal modes of statistical inference for causal effects. J. Statist. Plann. Inference 25 279-292.
    • (1990) J. Statist. Plann. Inference , vol.25 , pp. 279-292
    • Rubin, D.B.1
  • 40
    • 85062375539 scopus 로고    scopus 로고
    • Confounding and effect modification: Distribution and measure
    • VANDERWEELE, T. J. (2012). Confounding and effect modification: Distribution and measure. Epidemiologic Methods 1 55-82.
    • (2012) Epidemiologic Methods , vol.1 , pp. 55-82
    • Vanderweele, T.J.1
  • 41
    • 80054726997 scopus 로고    scopus 로고
    • A new criterion for confounder selection
    • MR2872391
    • VANDERWEELE, T. J. and SHPITSER, I. (2011). A new criterion for confounder selection. Biometrics 67 1406-1413. MR2872391
    • (2011) Biometrics , vol.67 , pp. 1406-1413
    • Vanderweele, T.J.1    Shpitser, I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.