메뉴 건너뛰기




Volumn 357, Issue , 2016, Pages 125-143

Dynamic Clustering Forest: An ensemble framework to efficiently classify textual data stream with concept drift

Author keywords

Clustering tree; Concept drift; Ensemble learning; Textual stream

Indexed keywords

DATA COMMUNICATION SYSTEMS; FORESTRY;

EID: 84964265088     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.03.043     Document Type: Article
Times cited : (44)

References (32)
  • 2
    • 56449097052 scopus 로고    scopus 로고
    • Ensemble of metamodels with optimized weight factors
    • E. Acar, and M. Rais-Rohani Ensemble of metamodels with optimized weight factors Struct. Multidiscip. Optim. 37 3 2009 279 294
    • (2009) Struct. Multidiscip. Optim. , vol.37 , Issue.3 , pp. 279-294
    • Acar, E.1    Rais-Rohani, M.2
  • 7
    • 77949418454 scopus 로고    scopus 로고
    • Data Stream Mining a Practical Approach
    • University of Waikato
    • A. Bifet, and R. Kirkby Data Stream Mining a Practical Approach Technical Report 2009 University of Waikato
    • (2009) Technical Report
    • Bifet, A.1    Kirkby, R.2
  • 10
    • 84874135193 scopus 로고    scopus 로고
    • Using a classifier pool in accuracy based tracking of recurring concepts in data stream classification
    • M.J. Hosseini, Z. Ahmadi, and H. Beigy Using a classifier pool in accuracy based tracking of recurring concepts in data stream classification Evol. Syst. 4 1 2013 43 60
    • (2013) Evol. Syst. , vol.4 , Issue.1 , pp. 43-60
    • Hosseini, M.J.1    Ahmadi, Z.2    Beigy, H.3
  • 12
    • 37849024302 scopus 로고    scopus 로고
    • Dynamic feature space and incremental feature selection for the classification of textual data streams
    • Springer
    • I. Katakis, G. Tsoumakas, and I. Vlahavas Dynamic feature space and incremental feature selection for the classification of textual data streams Knowledge Discovery from Data Streams 2006 Springer 107 116
    • (2006) Knowledge Discovery from Data Streams , pp. 107-116
    • Katakis, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 13
    • 77950689531 scopus 로고    scopus 로고
    • Tracking recurring contexts using ensemble classifiers: An application to email filtering
    • I. Katakis, G. Tsoumakas, and I. Vlahavas Tracking recurring contexts using ensemble classifiers: an application to email filtering Knowl. Inf. Syst. 22 3 2010 371 391
    • (2010) Knowl. Inf. Syst. , vol.22 , Issue.3 , pp. 371-391
    • Katakis, I.1    Tsoumakas, G.2    Vlahavas, I.3
  • 14
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J. Kolter, and M. Maloof Dynamic weighted majority: an ensemble method for drifting concepts J. Mach. Learn. Res. 8 2007 2755 2790
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 2755-2790
    • Kolter, J.1    Maloof, M.2
  • 15
    • 35048891979 scopus 로고    scopus 로고
    • Classifier ensembles for changing environments
    • Springer
    • L. Kuncheva Classifier ensembles for changing environments Multiple Classifier Systems 2004 Springer 1 15
    • (2004) Multiple Classifier Systems , pp. 1-15
    • Kuncheva, L.1
  • 18
    • 79957995371 scopus 로고    scopus 로고
    • A subspace decision cluster classifier for text classification
    • Li Y., Hung E., and Chung K. A subspace decision cluster classifier for text classification Expert Syst. Appl. 38 10 2011 12475 12482
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 12475-12482
    • Li, Y.1    Hung, E.2    Chung, K.3
  • 19
    • 58349085623 scopus 로고    scopus 로고
    • Building a decision cluster classification model for high dimensional data by a variable weighting k-means method
    • Springer
    • Li Y., Hung E., Chung K., and Huang J. Building a decision cluster classification model for high dimensional data by a variable weighting k-means method AI 2008: Advances in Artificial Intelligence 2008 Springer 337 347
    • (2008) AI 2008: Advances in Artificial Intelligence , pp. 337-347
    • Li, Y.1    Hung, E.2    Chung, K.3    Huang, J.4
  • 22
    • 79955500697 scopus 로고    scopus 로고
    • Classification and novel class detection in concept-drifting data streams under time constraints
    • M. Masud, Gao J., L. Khan, Han J., and B. Thuraisingham Classification and novel class detection in concept-drifting data streams under time constraints IEEE Trans. Knowl. Data Eng. 23 6 2011 859 874
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.6 , pp. 859-874
    • Masud, M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 25
    • 1542292535 scopus 로고
    • When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
    • DTIC
    • M. Perrone, and L. Cooper When Networks Disagree: Ensemble Methods for Hybrid Neural Networks Technical Report: DTIC Document 1992 DTIC
    • (1992) Technical Report: DTIC Document
    • Perrone, M.1    Cooper, L.2
  • 27
    • 84900002211 scopus 로고    scopus 로고
    • A dynamic ensemble framework for mining textual streams with class imbalance
    • Song G., and Ye Y. A dynamic ensemble framework for mining textual streams with class imbalance Sci. World J. 2014 1 2014 1 11
    • (2014) Sci. World J. , vol.2014 , Issue.1 , pp. 1-11
    • Song, G.1    Ye, Y.2
  • 28
    • 84055223920 scopus 로고    scopus 로고
    • A cluster tree method for text categorization
    • Sun Z., Ye Y., Deng W., and Huang Z. A cluster tree method for text categorization Proc. Eng. 15 2011 3785 3790
    • (2011) Proc. Eng. , vol.15 , pp. 3785-3790
    • Sun, Z.1    Ye, Y.2    Deng, W.3    Huang, Z.4
  • 31
    • 33749587572 scopus 로고    scopus 로고
    • An automatic construction and organization strategy for ensemble learning on data streams
    • Zhang Y., and Jin X. An automatic construction and organization strategy for ensemble learning on data streams ACM SIGMOD Rec. 35 3 2006 28 33
    • (2006) ACM SIGMOD Rec. , vol.35 , Issue.3 , pp. 28-33
    • Zhang, Y.1    Jin, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.