-
1
-
-
0034428159
-
Neural network ensemble for financial trend prediction
-
Abdullah, M., and Ganapathy, V. 2000. Neural network ensemble for financial trend prediction. TENCON 2000. Proceedings 3.
-
(2000)
TENCON 2000. Proceedings
, pp. 3
-
-
Abdullah, M.1
Ganapathy, V.2
-
2
-
-
0028424239
-
Improving generalization with active learning
-
Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving generalization with active learning. Machine Learning 15(2):201-221.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
3
-
-
22544443981
-
A case-based technique for tracking concept drift in spam filtering
-
Delany, S. J.; Cunningham, P.; Tsymbal, A.; and Coyle, L. 2005. A case-based technique for tracking concept drift in spam filtering. Knowledge-Based Systems 18(4-5).
-
(2005)
Knowledge-Based Systems
, vol.18
, pp. 4-5
-
-
Delany, S.J.1
Cunningham, P.2
Tsymbal, A.3
Coyle, L.4
-
4
-
-
2942536418
-
Active mining of data streams
-
Fan, W.; Huang, Y.; Wang, H.; and Yu, P. S. 2004. Active mining of data streams. In Proc. 4th SIAM ICDM, 457.
-
(2004)
Proc. 4th SIAM ICDM
, vol.457
-
-
Fan, W.1
Huang, Y.2
Wang, H.3
Yu, P.S.4
-
5
-
-
77957885321
-
A general framework for mining concept-drifting data streams with skewed distributions
-
Gao, J.; Fan, W.; Han, J.; and Yu, P. S. 2007. A general framework for mining concept-drifting data streams with skewed distributions. In Proc. SDM'07.
-
(2007)
Proc. SDM'07
-
-
Gao, J.1
Fan, W.2
Han, J.3
Yu, P.S.4
-
6
-
-
41649099657
-
An active learning system for mining time-changing data streams
-
Huang, S., and Dong, Y 2007. An active learning system for mining time-changing data streams, Intell. Data Anal. 11(4):401-419.
-
(2007)
Intell. Data Anal.
, vol.11
, Issue.4
, pp. 401-419
-
-
Huang, S.1
Dong, Y.2
-
7
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant
-
Joachims, T.; Nedellec, C.; and Rouveirol, C. 1998. Text categorization with support vector machines: learning with many relevant. In Machine Learning: ECML-98, 137-142.
-
(1998)
Machine Learning: ECML-98
, pp. 137-142
-
-
Joachims, T.1
Nedellec, C.2
Rouveirol, C.3
-
8
-
-
85123650840
-
Detecting change in data streams
-
Kifer, D.; Ben-David, S.; and Gehrke, J. 2004. Detecting change in data streams. In Proceedings of the Thirtieth Int. Conf. on VLDB, volume 30, 191.
-
(2004)
Proceedings of the Thirtieth Int. Conf. on VLDB
, vol.30
, pp. 191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
9
-
-
0141804082
-
Detecting concept drift with support vector machines
-
Klinkenberg, R., and Joachims, T. 2000. Detecting concept drift with support vector machines. Proc. 7th ICML 11.
-
(2000)
Proc. 7th ICML
, pp. 11
-
-
Klinkenberg, R.1
Joachims, T.2
-
10
-
-
14644441904
-
Learning drifting concepts with partial user feedback
-
Klinkenberg, R. 1999. Learning drifting concepts with partial user feedback. Beitrge zum Treffen der GI-Fachgruppe 1(3):44-53.
-
(1999)
Beitrge Zum Treffen der GI-Fachgruppe
, vol.1
, Issue.3
, pp. 44-53
-
-
Klinkenberg, R.1
-
11
-
-
78149292125
-
Dynamic weighted majority: A new ensemble method for tracking concept drift
-
Kolter, J., and Maloof, M. 2003. Dynamic weighted majority: a new ensemble method for tracking concept drift. In 3rd IEEE ICDM, 123-130.
-
(2003)
3rd IEEE ICDM
, pp. 123-130
-
-
Kolter, J.1
Maloof, M.2
-
12
-
-
0024896089
-
Floating approximation in time-varying knowledge bases
-
Kubat, M. 1989. Floating approximation in time-varying knowledge bases. Pattern recognition letters 10:223-227.
-
(1989)
Pattern Recognition Letters
, vol.10
, pp. 223-227
-
-
Kubat, M.1
-
15
-
-
77957858048
-
Streambased learning through data selection in a road safety application
-
Saunier, N.; Midenet, S.; and Grumbach, A. 2004. Streambased learning through data selection in a road safety application. In STAIRS 2004, Proceedings of the Second Starting AIResearchers'Symposium, volume 109, 107-117.
-
(2004)
STAIRS 2004, Proceedings of the Second Starting AIResearchers'Symposium
, vol.109
, pp. 107-117
-
-
Saunier, N.1
Midenet, S.2
Grumbach, A.3
-
16
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer, J. C., and Granger, R. H. 1986. Incremental learning from noisy data. Machine Learning 1:317-354.
-
(1986)
Machine Learning
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
17
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong, S., and Koller, D. 2002. Support vector machine active learning with applications to text classification. The Journal of Machine Learning Research 2:45-66.
-
(2002)
The Journal of Machine Learning Research
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
18
-
-
33845587386
-
Handling local concept drift with dynamic integration of classifiers
-
Tsymbal, A.; Pechenizkiy, M.; Cunningham, P.; and Puuronen, S. 2006. Handling local concept drift with dynamic integration of classifiers. In 19th IEEE International Symposium on CBMS, 679-684.
-
(2006)
19th IEEE International Symposium on CBMS
, pp. 679-684
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
Puuronen, S.4
-
20
-
-
35248825961
-
Representative sampling for text classification using support vector machines
-
In Advances in Information Retrieval
-
Xu, Z.; Yu, K.; Tresp, V.; Xu, X.; and Wang, J. 2003. Representative sampling for text classification using support vector machines. In Advances in Information Retrieval, volume 2633 of LNCS.
-
(2003)
LNCS
, vol.2633
-
-
Xu, Z.1
Yu, K.2
Tresp, V.3
Xu, X.4
Wang, J.5
-
21
-
-
49749138225
-
Active learning from data streams
-
Zhu, X.; Zhang, P.; Lin, X.; and Shi, Y 2007. Active learning from data streams. In Procs 7th IEEEICDM, 757-762.
-
(2007)
Procs 7th IEEEICDM
, pp. 757-762
-
-
Zhu, X.1
Zhang, P.2
Lin, X.3
Shi, Y.4
|