-
1
-
-
84963902455
-
-
Breast Cancer. Retrieved from Last accessed on March 2 2016
-
Breast Cancer. American Cancer Society 2014. Retrieved from www.cancer.org/acs/groups/cid/documents/webcontent/.003090-pdf.pdf; Last accessed on March. 2 2016.
-
American Cancer Society 2014
-
-
-
2
-
-
84963841360
-
-
The Breast Cancer Landscape. Retreived from Last accessed March 2 2016
-
The Breast Cancer Landscape. Department of Defense Breast Cancer Research Program 2016. Retreived from http://.cdmrp.army.mil/bcrp/pdfs/bc-landscape.pdf; Last accessed March. 2 2016.
-
Department of Defense Breast Cancer Research Program 2016
-
-
-
4
-
-
84920837701
-
Cancer statistics 2015
-
Siegel R.L, Miller K.D, and Jemal A. Cancer statistics, 2015. CA: a cancer J Clin. 65, 5, 2015.
-
(2015)
CA: A Cancer J Clin
, vol.65
, pp. 5
-
-
Siegel, R.L.1
Miller, K.D.2
Jemal, A.3
-
5
-
-
78650028237
-
The molecular pathology of breast cancer progression
-
Bombonati A, and Sgroi D.C. The molecular pathology of breast cancer progression. J Pathol. 223, 307, 2011.
-
(2011)
J Pathol
, vol.223
, pp. 307
-
-
Bombonati, A.1
Sgroi, D.C.2
-
6
-
-
0003964363
-
-
American Cancer Society. Atlanta: American Cancer Society
-
American Cancer Society. Cancer Facts & Figures 2015. Atlanta: American Cancer Society 2015.
-
(2015)
Cancer Facts & Figures 2015
-
-
-
7
-
-
84899513546
-
Three-dimensional in vitro cancer models: A short review
-
Wang C, Tang Z, Zhao Y, Yao R, Li L, and Sun W. Three-dimensional in vitro cancer models: a short review. Biofabrication. 6, 022001, 2014.
-
(2014)
Biofabrication
, vol.6
, pp. 022001
-
-
Wang, C.1
Tang, Z.2
Zhao, Y.3
Yao, R.4
Li, L.5
Sun, W.6
-
8
-
-
34648834682
-
The third dimension bridges the gap between cell culture and live tissue
-
Pampaloni F, Reynaud E.G, and Stelzer E.H. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 8, 839, 2007.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, pp. 839
-
-
Pampaloni, F.1
Reynaud, E.G.2
Stelzer, E.H.3
-
9
-
-
84867887350
-
Deconstructing the third dimension: How 3D culture microenvironments alter cellular cues
-
Baker B.M, and Chen C.S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J Cell Sci. 125, 3015, 2012.
-
(2012)
J Cell Sci
, vol.125
, pp. 3015
-
-
Baker, B.M.1
Chen, C.S.2
-
10
-
-
67650169752
-
Hydrogels as extracellular matrix mimics for 3D cell culture
-
Tibbitt M.W, and Anseth K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 103, 655, 2009.
-
(2009)
Biotechnol Bioeng
, vol.103
, pp. 655
-
-
Tibbitt, M.W.1
Anseth, K.S.2
-
11
-
-
84930696067
-
Engineering cancer microenvironments for in vitro 3-D tumor models
-
Asghar, W, El Assal R, Shafiee H, Pitteri S, Paulmurugan R, and Demirci U. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today. 18, 539, 2015.
-
(2015)
Mater Today
, vol.18
, pp. 539
-
-
Asghar, W.1
El Assal, R.2
Shafiee, H.3
Pitteri, S.4
Paulmurugan, R.5
Demirci, U.6
-
12
-
-
84906816780
-
Three-dimensional models of cancer for pharmacology and cancer cell biology: Capturing tumor complexity in vitro/ex vivo
-
Hickman J.A, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H, and Consortium I.P. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J. 9, 1115, 2014.
-
(2014)
Biotechnol J
, vol.9
, pp. 1115
-
-
Hickman, J.A.1
Graeser, R.2
De Hoogt, R.3
Vidic, S.4
Brito, C.5
Gutekunst, M.6
Van Der Kuip, H.7
Consortium, I.P.8
-
13
-
-
3042667195
-
Three-dimensional in vitro tissue culture models of breast cancer-A review
-
Kim J.B, Stein R, and O?Hare M.J. Three-dimensional in vitro tissue culture models of breast cancer-A review. Breast Cancer Res Treat. 85, 281, 2004.
-
(2004)
Breast Cancer Res Treat
, vol.85
, pp. 281
-
-
Kim, J.B.1
Stein, R.2
O'Hare, M.J.3
-
14
-
-
23844460881
-
Three-dimensional tissue culture models in cancer biology
-
Kim J.B. Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol. 15, 365, 2005.
-
(2005)
Semin Cancer Biol
, vol.15
, pp. 365
-
-
Kim, J.B.1
-
15
-
-
0037603113
-
Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures
-
Debnath J, Muthuswamy S.K, and Brugge J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods. 30, 256, 2003.
-
(2003)
Methods
, vol.30
, pp. 256
-
-
Debnath, J.1
Muthuswamy, S.K.2
Brugge, J.S.3
-
16
-
-
84899966772
-
The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer
-
Weigelt B, Ghajar C.M, and Bissell M.J. The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer. Adv Drug Deliv Rev 69-70, 42, 2014.
-
(2014)
Adv Drug Deliv Rev 69-70
, pp. 42
-
-
Weigelt, B.1
Ghajar, C.M.2
Bissell, M.J.3
-
17
-
-
62649137026
-
Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries
-
Nikkhah M, Strobl J.S, and Agah M. Attachment and response of human fibroblast and breast cancer cells to three dimensional silicon microstructures of different geometries. Biomed Microdevices. 11, 429, 2009.
-
(2009)
Biomed Microdevices
, vol.11
, pp. 429
-
-
Nikkhah, M.1
Strobl, J.S.2
Agah, M.3
-
18
-
-
49949086830
-
The effect of geometry on three-dimensional tissue growth
-
Rumpler M, Woesz A, Dunlop J.W, van Dongen J.T, and Fratzl P. The effect of geometry on three-dimensional tissue growth. J R Soc Interface. 5, 1173, 2008.
-
(2008)
J R Soc Interface
, vol.5
, pp. 1173
-
-
Rumpler, M.1
Woesz, A.2
Dunlop, J.W.3
Van Dongen, J.T.4
Fratzl, P.5
-
19
-
-
84953835686
-
Patterning of fibroblast and matrix anisotropy within 3d confinement is driven by the cytoskeleton
-
Serbo J.V, Kuo S, Lewis S, Lehmann M, Li J, Gracias D.H, and Romer L.H. Patterning of fibroblast and matrix anisotropy within 3d confinement is driven by the cytoskeleton. Adv Healthc Mater. 5, 146, 2016.
-
(2016)
Adv Healthc Mater
, vol.5
, pp. 146
-
-
Serbo, J.V.1
Kuo, S.2
Lewis, S.3
Lehmann, M.4
Li, J.5
Gracias, D.H.6
Romer, L.H.7
-
20
-
-
33749992857
-
Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures
-
Nelson C.M, Vanduijn M.M, Inman J.L, Fletcher D.A, and Bissell M.J. Tissue geometry determines sites of mammary branching morphogenesis in organotypic cultures. Science. 314, 298, 2006.
-
(2006)
Science
, vol.314
, pp. 298
-
-
Nelson, C.M.1
Vanduijn, M.M.2
Inman, J.L.3
Fletcher, D.A.4
Bissell, M.J.5
-
21
-
-
84912072318
-
The importance of being a lumen
-
Bischel L.L, Sung K.E, Jimenez-Torres J.A, Mader B, Keely P.J, and Beebe D.J. The importance of being a lumen. FASEB J. 28, 4583, 2014.
-
(2014)
FASEB J
, vol.28
, pp. 4583
-
-
Bischel, L.L.1
Sung, K.E.2
Jimenez-Torres, J.A.3
Mader, B.4
Keely, P.J.5
Beebe, D.J.6
-
22
-
-
84881574915
-
Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers
-
Jamal M, Kadam S.S, Xiao R, Jivan F, Onn T.M, Fernandes R, Nguyen T.D, and Gracias D.H. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv Healthc Mater. 2, 1142, 2013.
-
(2013)
Adv Healthc Mater
, vol.2
, pp. 1142
-
-
Jamal, M.1
Kadam, S.S.2
Xiao, R.3
Jivan, F.4
Onn, T.M.5
Fernandes, R.6
Nguyen, T.D.7
Gracias, D.H.8
-
23
-
-
84906078337
-
Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies
-
Xi W, Schmidt C.K, Sanchez S, Gracias D.H, Carazo-Salas R.E, Jackson S.P, and Schmidt O.G. Rolled-up functionalized nanomembranes as three-dimensional cavities for single cell studies. Nano Lett. 14, 4197, 2014.
-
(2014)
Nano Lett
, vol.14
, pp. 4197
-
-
Xi, W.1
Schmidt, C.K.2
Sanchez, S.3
Gracias, D.H.4
Carazo-Salas, R.E.5
Jackson, S.P.6
Schmidt, O.G.7
-
24
-
-
84883233744
-
Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model
-
Verbridge S.S, Chakrabarti A, DelNero P, Kwee B, Varner J.D, Stroock A.D, and Fischbach C. Physicochemical regulation of endothelial sprouting in a 3D microfluidic angiogenesis model. J Biomed Mater Res A. 101, 2948, 2013.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 2948
-
-
Verbridge, S.S.1
Chakrabarti, A.2
DelNero, P.3
Kwee, B.4
Varner, J.D.5
Stroock, A.D.6
Fischbach, C.7
-
25
-
-
84938352078
-
Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure
-
Bischel L.L, Beebe D.J, and Sung K.E. Microfluidic model of ductal carcinoma in situ with 3D, organotypic structure. BMC Cancer. 15, 12, 2015.
-
(2015)
BMC Cancer
, vol.15
, pp. 12
-
-
Bischel, L.L.1
Beebe, D.J.2
Sung, K.E.3
-
26
-
-
44149127749
-
Biodegradable polymer tubes with lithographically controlled 3D micro-And nanotopography
-
Seunarine K, Meredith D.O, Riehle M.O, Wilkinson C.D.W, and Gadegaard N. Biodegradable polymer tubes with lithographically controlled 3D micro-And nanotopography. Microelectron Eng. 85, 1350, 2008.
-
(2008)
Microelectron Eng
, vol.85
, pp. 1350
-
-
Seunarine, K.1
Meredith, D.O.2
Riehle, M.O.3
Wilkinson, C.D.W.4
Gadegaard, N.5
-
27
-
-
69649098734
-
Development and analysis of multi-layer scaffolds for tissue engineering
-
Papenburg B.J, Liu J, Higuera G.A, Barradas A.M, de Boer J, van Blitterswijk C.A, Wessling M, and Stamatialis D. Development and analysis of multi-layer scaffolds for tissue engineering. Biomaterials. 30, 6228, 2009.
-
(2009)
Biomaterials
, vol.30
, pp. 6228
-
-
Papenburg, B.J.1
Liu, J.2
Higuera, G.A.3
Barradas, A.M.4
De Boer, J.5
Van Blitterswijk, C.A.6
Wessling, M.7
Stamatialis, D.8
-
28
-
-
79960496535
-
Biomimetic structures: Biological implications of dipeptide-substituted polyphosphazenepolyester blend nanofiber matrices for load-bearing bone regeneration
-
Deng M, Kumbar S.G, Nair L.S, Weikel A.L, Allcock H.R, and Laurencin C.T. Biomimetic structures: biological implications of dipeptide-substituted polyphosphazenepolyester blend nanofiber matrices for load-bearing bone regeneration. Adv Funct Mater. 21, 2641, 2011.
-
(2011)
Adv Funct Mater
, vol.21
, pp. 2641
-
-
Deng, M.1
Kumbar, S.G.2
Nair, L.S.3
Weikel, A.L.4
Allcock, H.R.5
Laurencin, C.T.6
-
29
-
-
84863123840
-
Bio-electrospinning of poly(l-lactic acid) hollow fibrous membrane
-
Shih Y.H, Yang J.C, Li S.H, Yang W.C.V, and Chen C.C. Bio-electrospinning of poly(l-lactic acid) hollow fibrous membrane. Text Res J. 82, 602, 2012.
-
(2012)
Text Res J
, vol.82
, pp. 602
-
-
Shih, Y.H.1
Yang, J.C.2
Li, S.H.3
Yang, W.C.V.4
Chen, C.C.5
-
30
-
-
84916624278
-
Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapodlike structures
-
He X.H, Wang W, Deng K, Xie R, Ju X.J, Liu Z, and Chu L.Y. Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapodlike structures. RSC Adv. 5, 928, 2015.
-
(2015)
RSC Adv
, vol.5
, pp. 928
-
-
He, X.H.1
Wang, W.2
Deng, K.3
Xie, R.4
Ju, X.J.5
Liu, Z.6
Chu, L.Y.7
-
31
-
-
84877728399
-
Microfluidic fabrication of cell adhesive chitosan microtubes
-
Oh J, Kim K, Won S.W, Cha C, Gaharwar A.K, Selimovic S, Bae H, Lee K.H, Lee D.H, Lee S.H, and Khademhosseini A. Microfluidic fabrication of cell adhesive chitosan microtubes. Biomed Microdevices. 15, 465, 2013.
-
(2013)
Biomed Microdevices
, vol.15
, pp. 465
-
-
Oh, J.1
Kim, K.2
Won, S.W.3
Cha, C.4
Gaharwar, A.K.5
Selimovic, S.6
Bae, H.7
Lee, K.H.8
Lee, D.H.9
Lee, S.H.10
Khademhosseini, A.11
-
32
-
-
76949087713
-
Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering
-
Song Y, Kamphuis M.M, Zhang Z, Sterk L.M, Vermes I, Poot A.A, Feijen J, and Grijpma D.W. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering. Acta Biomater. 6, 1269, 2010.
-
(2010)
Acta Biomater
, vol.6
, pp. 1269
-
-
Song, Y.1
Kamphuis, M.M.2
Zhang, Z.3
Sterk, L.M.4
Vermes, I.5
Poot, A.A.6
Feijen, J.7
Grijpma, D.W.8
-
33
-
-
84860427073
-
PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method
-
Ma X.H, Xu Z.L, Wu F, and Xu H.T. PFSA-TiO2(or Al2O3)-PVA/PVA/PAN difunctional hollow fiber composite membranes prepared by dip-coating method. Iran Polym J. 21, 31, 2012.
-
(2012)
Iran Polym J
, vol.21
, pp. 31
-
-
Ma, X.H.1
Xu, Z.L.2
Wu, F.3
Xu, H.T.4
-
34
-
-
84894253628
-
On-chip self-Assembly of cell embedded microstructures to vascular-likemicrotubes
-
Yue T, Nakajima M, Takeuchi M, Hu C, Huang Q, and Fukuda T. On-chip self-Assembly of cell embedded microstructures to vascular-likemicrotubes. LabChip. 14, 1151, 2014.
-
(2014)
LabChip
, vol.14
, pp. 1151
-
-
Yue, T.1
Nakajima, M.2
Takeuchi, M.3
Hu, C.4
Huang, Q.5
Fukuda, T.6
-
35
-
-
84895429567
-
Nanostructured hollow tubes based on chitosan and alginate multilayers
-
Silva J.M, Duarte A.R, Custodio C.A, Sher P, Neto A.I, Pinho A.C, Fonseca J, Reis R.L, and Mano J.F. Nanostructured hollow tubes based on chitosan and alginate multilayers. Adv Healthc Mater. 3, 433, 2014.
-
(2014)
Adv Healthc Mater
, vol.3
, pp. 433
-
-
Silva, J.M.1
Duarte, A.R.2
Custodio, C.A.3
Sher, P.4
Neto, A.I.5
Pinho, A.C.6
Fonseca, J.7
Reis, R.L.8
Mano, J.F.9
-
36
-
-
84875234322
-
Electrodeposition of alginate gels for construction of vascular-like structures
-
Ozawa F, Ino K, Takahashi Y, Shiku H, and Matsue T. Electrodeposition of alginate gels for construction of vascular-like structures. J Biosci Bioeng. 115, 459, 2013.
-
(2013)
J Biosci Bioeng
, vol.115
, pp. 459
-
-
Ozawa, F.1
Ino, K.2
Takahashi, Y.3
Shiku, H.4
Matsue, T.5
-
37
-
-
70449720966
-
A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts
-
Soletti L, Hong Y, Guan J, Stankus J.J, El-Kurdi M.S, Wagner W.R, and Vorp D.A. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomater. 6, 110, 2010.
-
(2010)
Acta Biomater
, vol.6
, pp. 110
-
-
Soletti, L.1
Hong, Y.2
Guan, J.3
Stankus, J.J.4
El-Kurdi, M.S.5
Wagner, W.R.6
Vorp, D.A.7
-
38
-
-
84938066460
-
Direct bioprinting of vessel-like tubular microfluidic channels
-
Zhang Y, Yu Y, and Ozbolat I.T. Direct bioprinting of vessel-like tubular microfluidic channels. J Nanotechnol Eng Med. 4, 020902, 2013.
-
(2013)
J Nanotechnol Eng Med
, vol.4
, pp. 020902
-
-
Zhang, Y.1
Yu, Y.2
Ozbolat, I.T.3
-
39
-
-
84934326155
-
Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures
-
Arayanarakool R., Meyer A.K, Helbig L, Sanchez S, and Schmidt O.G. Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures. Lab Chip. 15, 2981, 2015.
-
(2015)
Lab Chip
, vol.15
, pp. 2981
-
-
Arayanarakool, R.1
Meyer, A.K.2
Helbig, L.3
Sanchez, S.4
Schmidt, O.G.5
-
40
-
-
80052301140
-
Design properties of hydrogel tissue-engineering scaffolds
-
Zhu J, and Marchant R.E. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 8, 607, 2011.
-
(2011)
Expert Rev Med Devices
, vol.8
, pp. 607
-
-
Zhu, J.1
Marchant, R.E.2
-
41
-
-
0036345151
-
Photopolymerizable hydrogels for tissue engineering applications
-
Nguyen K.T, and West J.L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 23, 4307, 2002.
-
(2002)
Biomaterials
, vol.23
, pp. 4307
-
-
Nguyen, K.T.1
West, J.L.2
-
42
-
-
77955070371
-
Controlling the porosity and microarchitecture of hydrogels for tissue engineering
-
Annabi N, Nichol J.W, Zhong X, Ji C, Koshy S, Khademhosseini A, and Dehghani F. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B Rev. 16, 371, 2010.
-
(2010)
Tissue Eng Part B Rev
, vol.16
, pp. 371
-
-
Annabi, N.1
Nichol, J.W.2
Zhong, X.3
Ji, C.4
Koshy, S.5
Khademhosseini, A.6
Dehghani, F.7
-
43
-
-
0042061223
-
Hydrogels for tissue engineering: Scaffold design variables and applications
-
Drury J.L, and Mooney D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 24, 4337, 2003.
-
(2003)
Biomaterials
, vol.24
, pp. 4337
-
-
Drury, J.L.1
Mooney, D.J.2
-
44
-
-
84873030339
-
Vascular tissue engineering: Biodegradable scaffold platforms to promote angiogenesis
-
Serbo J.V, and Gerecht S. Vascular tissue engineering: biodegradable scaffold platforms to promote angiogenesis. Stem Cell Res Ther. 4, 8, 2013.
-
(2013)
Stem Cell Res Ther
, vol.4
, pp. 8
-
-
Serbo, J.V.1
Gerecht, S.2
-
45
-
-
84905216941
-
Stimuliresponsive theragrippers for chemomechanical controlled release
-
Malachowski K, Breger J, Kwag H.R, Wang M.O, Fisher J.P, Selaru F.M, and Gracias D.H. Stimuliresponsive theragrippers for chemomechanical controlled release. Angew Chem Int Ed Engl. 53, 8045, 2014.
-
(2014)
Angew Chem Int Ed Engl
, vol.53
, pp. 8045
-
-
Malachowski, K.1
Breger, J.2
Kwag, H.R.3
Wang, M.O.4
Fisher, J.P.5
Selaru, F.M.6
Gracias, D.H.7
-
46
-
-
79958788050
-
Fully biodegradable self-rolled polymer tubes: A candidate for tissue engineering scaffolds
-
Zakharchenko S, Sperling E, and Ionov L. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromolecules. 12, 2211, 2011.
-
(2011)
Biomacromolecules
, vol.12
, pp. 2211
-
-
Zakharchenko, S.1
Sperling, E.2
Ionov, L.3
-
47
-
-
84922783157
-
Self-folding thermo-magnetically responsive soft microgrippers
-
Breger J.C, Yoon C, Xiao R, Kwag H.R, Wang M.O, Fisher J.P, Nguyen T.D, and Gracias D.H. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces. 7, 3398, 2015.
-
(2015)
ACS Appl Mater Interfaces
, vol.7
, pp. 3398
-
-
Breger, J.C.1
Yoon, C.2
Xiao, R.3
Kwag, H.R.4
Wang, M.O.5
Fisher, J.P.6
Nguyen, T.D.7
Gracias, D.H.8
-
48
-
-
78649909612
-
Enzymatically triggered actuation of miniaturized tools
-
Bassik N, Brafman A, Zarafshar A.M, Jamal M, Luvsanjav D, Selaru F.M, and Gracias D.H. Enzymatically triggered actuation of miniaturized tools. J Am Chem Soc. 132, 16314, 2010.
-
(2010)
J Am Chem Soc
, vol.132
, pp. 16314
-
-
Bassik, N.1
Brafman, A.2
Zarafshar, A.M.3
Jamal, M.4
Luvsanjav, D.5
Selaru, F.M.6
Gracias, D.H.7
-
49
-
-
84886291980
-
In situ self-folding assembly of a multi-walled hydrogel tube for uniaxial sustained molecular release
-
Baek K, Jeong J.H, Shkumatov A, Bashir R, and Kong H. In situ self-folding assembly of a multi-walled hydrogel tube for uniaxial sustained molecular release. Adv Mater. 25, 5568, 2013.
-
(2013)
Adv Mater
, vol.25
, pp. 5568
-
-
Baek, K.1
Jeong, J.H.2
Shkumatov, A.3
Bashir, R.4
Kong, H.5
-
50
-
-
84901377154
-
PEG molecular net-cloth grafted on polymeric substrates and its bio-merits
-
Zhao C, Lin Z, Yin H, Ma Y, Xu F, and Yang W. PEG molecular net-cloth grafted on polymeric substrates and its bio-merits. Sci Rep. 4, 4982, 2014.
-
(2014)
Sci Rep
, vol.4
, pp. 4982
-
-
Zhao, C.1
Lin, Z.2
Yin, H.3
Ma, Y.4
Xu, F.5
Yang, W.6
-
51
-
-
84945480564
-
Hydrogelmicroparticles for biosensing
-
Le Goff G.C, Srinivas R.L, Hill W.A, and Doyle P.S. Hydrogelmicroparticles for biosensing. Eur PolymJ. 72, 386, 2015.
-
(2015)
Eur PolymJ
, vol.72
, pp. 386
-
-
Le Goff, G.C.1
Srinivas, R.L.2
Hill, W.A.3
Doyle, P.S.4
-
52
-
-
35748962940
-
Breast duct anatomy in the human nipple: Threedimensional patterns and clinical implications
-
Rusby J, Brachtel E, Michaelson J, Koerner F, and Smith B. Breast duct anatomy in the human nipple: threedimensional patterns and clinical implications. Breast Cancer Res Treat. 106, 171, 2007.
-
(2007)
Breast Cancer Res Treat
, vol.106
, pp. 171
-
-
Rusby, J.1
Brachtel, E.2
Michaelson, J.3
Koerner, F.4
Smith, B.5
-
53
-
-
0842303407
-
Ultrasound imaging of milk ejection in the breast of lactating women
-
Ramsay D.T, Kent J.C, Owens R.A, and Hartmann P.E. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 113, 361, 2004.
-
(2004)
Pediatrics
, vol.113
, pp. 361
-
-
Ramsay, D.T.1
Kent, J.C.2
Owens, R.A.3
Hartmann, P.E.4
-
54
-
-
21044457398
-
Anatomy of the lactating human breast redefined with ultrasound imaging
-
Ramsay D.T, Kent J.C, Hartmann R.A, and Hartman P.E. Anatomy of the lactating human breast redefined with ultrasound imaging. J Anat. 206, 525, 2005.
-
(2005)
J Anat
, vol.206
, pp. 525
-
-
Ramsay, D.T.1
Kent, J.C.2
Hartmann, R.A.3
Hartman, P.E.4
-
55
-
-
74849102013
-
PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity
-
Nemir S, Hayenga H.N, and West J.L. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity.BiotechnolBioeng 105 636 2010.
-
(2010)
BiotechnolBioeng
, vol.105
, pp. 636
-
-
Nemir, S.1
Hayenga, H.N.2
West, J.L.3
-
56
-
-
33750626747
-
Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-Aspartate-modified hydrogels
-
Hwang N.S, Varghese S, Zhang Z, and Elisseeff J. Chondrogenic differentiation of human embryonic stem cell-derived cells in arginine-glycine-Aspartate-modified hydrogels. Tissue Eng. 12, 2695, 2006.
-
(2006)
Tissue Eng
, vol.12
, pp. 2695
-
-
Hwang, N.S.1
Varghese, S.2
Zhang, Z.3
Elisseeff, J.4
-
57
-
-
12344327314
-
Photo-And electropatterning of hydrogel-encapsulated living cell arrays
-
Albrecht D.R, Tsang V.L, Sah R.L, and Bhatia S.N. Photo-And electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip. 5, 111, 2005.
-
(2005)
Lab Chip
, vol.5
, pp. 111
-
-
Albrecht, D.R.1
Tsang, V.L.2
Sah, R.L.3
Bhatia, S.N.4
-
58
-
-
46149093704
-
Stop-flow lithography to generate cell-laden microgel particles
-
Panda P, Ali S, Lo E, Chung B.G, Hatton T.A, Khademhosseini A, and Doyle P.S. Stop-flow lithography to generate cell-laden microgel particles. Lab Chip. 8, 1056, 2008.
-
(2008)
Lab Chip
, vol.8
, pp. 1056
-
-
Panda, P.1
Ali, S.2
Lo, E.3
Chung, B.G.4
Hatton, T.A.5
Khademhosseini, A.6
Doyle, P.S.7
-
59
-
-
84908126812
-
Immobilization of cell-Adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis
-
Ali S, Saik J.E, Gould D.J, Dickinson M.E, and West J.L. Immobilization of cell-Adhesive laminin peptides in degradable PEGDA hydrogels influences endothelial cell tubulogenesis. Biores Open Access. 2, 241, 2013.
-
(2013)
Biores Open Access
, vol.2
, pp. 241
-
-
Ali, S.1
Saik, J.E.2
Gould, D.J.3
Dickinson, M.E.4
West, J.L.5
-
60
-
-
84919665191
-
Characterization of sequential collagenpoly( ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering
-
Munoz-Pinto D.J, Jimenez-Vergara A.C, Gharat T.P, and Hahn M.S. Characterization of sequential collagenpoly( ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials. 40, 32, 2015.
-
(2015)
Biomaterials
, vol.40
, pp. 32
-
-
Munoz-Pinto, D.J.1
Jimenez-Vergara, A.C.2
Gharat, T.P.3
Hahn, M.S.4
-
61
-
-
60349084218
-
Astudy of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing
-
Bader R.A., Herzog K.T, and Kao W.J.Astudy of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing Polym Bull (Berl) 62, 381, 2009.
-
(2009)
Polym Bull (Berl
, vol.62
, pp. 381
-
-
Bader, R.A.1
Herzog, K.T.2
Kao, W.J.3
-
62
-
-
77953577325
-
Multilayer microfluidic PEGDA hydrogels
-
Cuchiara M.P, Allen A.C, Chen T.M, Miller J.S, and West J.L. Multilayer microfluidic PEGDA hydrogels. Biomaterials. 31, 5491, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 5491
-
-
Cuchiara, M.P.1
Allen, A.C.2
Chen, T.M.3
Miller, J.S.4
West, J.L.5
-
63
-
-
84863213613
-
Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films
-
Grover C.N, Gwynne J.H, Pugh N, Hamaia S, Farndale R.W, Best S.M, and Cameron R.E. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomater. 8, 3080, 2012.
-
(2012)
Acta Biomater
, vol.8
, pp. 3080
-
-
Grover, C.N.1
Gwynne, J.H.2
Pugh, N.3
Hamaia, S.4
Farndale, R.W.5
Best, S.M.6
Cameron, R.E.7
-
64
-
-
77953025978
-
Cell-laden microengineered gelatin methacrylate hydrogels
-
Nichol J.W, Koshy S.T, Bae H, Hwang C.M, Yamanlar S, and Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials. 31, 5536, 2010.
-
(2010)
Biomaterials
, vol.31
, pp. 5536
-
-
Nichol, J.W.1
Koshy, S.T.2
Bae, H.3
Hwang, C.M.4
Yamanlar, S.5
Khademhosseini, A.6
-
65
-
-
70349941415
-
Autocrine semaphorin3A stimulates alpha2 beta1 integrin expression/function in breast tumor cells
-
Pan H, Wanami L.S, Dissanayake T.R, and Bachelder R.E. Autocrine semaphorin3A stimulates alpha2 beta1 integrin expression/function in breast tumor cells. Breast Cancer Res Treat. 118, 197, 2009.
-
(2009)
Breast Cancer Res Treat
, vol.118
, pp. 197
-
-
Pan, H.1
Wanami, L.S.2
Dissanayake, T.R.3
Bachelder, R.E.4
-
66
-
-
33845209913
-
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
-
Neve R.M, Chin K, Fridlyand J, Yeh J, Baehner F.L, Fevr T, Clark L, Bayani N, Coppe J.P, Tong F, Speed T, Spellman P.T, DeVries S, Lapuk A, Wang N.J, Kuo W.L, Stilwell J.L, Pinkel D, Albertson D.G, Waldman F.M, McCormick F, Dickson R.B, Johnson M.D, Lippman M, Ethier S, Gazdar A, and Gray J.W. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 10, 515, 2006.
-
(2006)
Cancer Cell
, vol.10
, pp. 515
-
-
Neve, R.M.1
Chin, K.2
Fridlyand, J.3
Yeh, J.4
Baehner, F.L.5
Fevr, T.6
Clark, L.7
Bayani, N.8
Coppe, J.P.9
Tong, F.10
Speed, T.11
Spellman, P.T.12
DeVries, S.13
Lapuk, A.14
Wang, N.J.15
Kuo, W.L.16
Stilwell, J.L.17
Pinkel, D.18
Albertson, D.G.19
Waldman, F.M.20
McCormick, F.21
Dickson, R.B.22
Johnson, M.D.23
Lippman, M.24
Ethier, S.25
Gazdar, A.26
Gray, J.W.27
more..
-
67
-
-
84963916933
-
-
Neve CellLine Oncomine Research Edition
-
Comparison of All Genes in Neve CellLine Oncomine Research Edition. www.oncomine.org
-
Comparison of All Genes
-
-
|