메뉴 건너뛰기




Volumn 6713 LNCS, Issue , 2011, Pages 259-268

Classification by cluster analysis: A new meta-learning based approach

Author keywords

Clustering; Combining Classifiers; Ensembles; Meta Learning; Stacking

Indexed keywords

CLUSTERING; COMBINING CLASSIFIERS; ENSEMBLES; METALEARNING; STACKING;

EID: 80052987867     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21557-5_28     Document Type: Conference Paper
Times cited : (13)

References (14)
  • 1
    • 33750731980 scopus 로고    scopus 로고
    • On Combining Multiple Classifiers Using an Evidential Approach
    • Bi, Y., McClean, S., Anderson, T.: On Combining Multiple Classifiers Using an Evidential Approach. Artificial Intelligence, 324-329 (2006)
    • (2006) Artificial Intelligence , pp. 324-329
    • Bi, Y.1    McClean, S.2    Anderson, T.3
  • 3
    • 12144288329 scopus 로고    scopus 로고
    • Is Combining Classifiers with Stacking Better than Selecting the Best One?
    • Dzeroski, S., Zenko, B.: Is Combining Classifiers with Stacking Better than Selecting the Best One? Machine Learning, pp. 255-273 (2004)
    • (2004) Machine Learning , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 4
    • 84945261092 scopus 로고    scopus 로고
    • Pairwise Classification as an Ensemble Technique
    • Springer, London
    • Furnkranz, J.: Pairwise Classification as an Ensemble Technique. In: 13th European Conference on Machine Learning, UK, pp. 97-110. Springer, London (2002)
    • (2002) 13th European Conference on Machine Learning, UK , pp. 97-110
    • Furnkranz, J.1
  • 6
    • 0037403516 scopus 로고    scopus 로고
    • Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy
    • Kuncheva, L.I., Whitaker, C.J.: Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy. Machine Learning, 181-207 (2004)
    • (2004) Machine Learning , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 7
    • 70349750474 scopus 로고    scopus 로고
    • Troika - An improved stacking schema for classification tasks
    • Menahem, E., Rokach, L., Elovici, Y.: Troika - An improved stacking schema for classification tasks. Information Sciences, 4097-4122 (2009)
    • (2009) Information Sciences , pp. 4097-4122
    • Menahem, E.1    Rokach, L.2    Elovici, Y.3
  • 10
    • 8444229122 scopus 로고    scopus 로고
    • How to Make Stacking Better and Faster while Also Taking Care of an Unknown Weakness
    • Morgan Kaufmann Publishers, San Francisco
    • Seewald, A.K.: How to Make Stacking Better and Faster While Also Taking Care of an Unknown Weakness. In: 19th International Conference on Machine Learning, pp. 554-561. Morgan Kaufmann Publishers, San Francisco (2002)
    • (2002) 19th International Conference on Machine Learning , pp. 554-561
    • Seewald, A.K.1
  • 14
    • 33751567719 scopus 로고    scopus 로고
    • A comparison of stacking with MDTs to bagging, boosting, and other stacking methods
    • Zenko, B., Todorovski, L., Dzeroski, S.: A comparison of stacking with MDTs to bagging, boosting, and other stacking methods. In: Int. Conference on Data Mining, pp. 669-670 (2001)
    • (2001) Int. Conference on Data Mining , pp. 669-670
    • Zenko, B.1    Todorovski, L.2    Dzeroski, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.