메뉴 건너뛰기




Volumn 269, Issue , 2014, Pages 35-47

A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system

Author keywords

Change detection; Elliptical basis function neural network; Ensemble classifier; Fuzzy k nearest neighbor classifier; Multilayer perceptron; Semi supervised learning

Indexed keywords

CONFORMAL MAPPING; FUNCTIONS; ITERATIVE METHODS; REMOTE SENSING; SELF ORGANIZING MAPS; SPECTROSCOPY; SUPERVISED LEARNING;

EID: 84897049246     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.01.037     Document Type: Article
Times cited : (66)

References (48)
  • 1
    • 0024855524 scopus 로고
    • Digital change detection techniques using remotely-sensed data
    • A. Singh Digital change detection techniques using remotely-sensed data Int. J. Remote Sens. 10 6 1989 989 1003
    • (1989) Int. J. Remote Sens. , vol.10 , Issue.6 , pp. 989-1003
    • Singh, A.1
  • 3
    • 0036326141 scopus 로고    scopus 로고
    • Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data
    • Q. Zhang, J. Wang, X. Peng, P. Gong, and P. Shi Urban built-up land change detection with road density and spectral information from multi-temporal Landsat TM data Int. J. Remote Sens. 23 15 2002 3057 3078
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.15 , pp. 3057-3078
    • Zhang, Q.1    Wang, J.2    Peng, X.3    Gong, P.4    Shi, P.5
  • 4
    • 0031988679 scopus 로고    scopus 로고
    • A comparison of four algorithms for change detection in an urban environment
    • K.R. Merril, and L. Jiajun A comparison of four algorithms for change detection in an urban environment Remote Sens. Environ. 63 2 1998 95 100
    • (1998) Remote Sens. Environ. , vol.63 , Issue.2 , pp. 95-100
    • Merril, K.R.1    Jiajun, L.2
  • 5
    • 0343963059 scopus 로고    scopus 로고
    • An adaptive parcel-based technique for unsupervised change detection
    • L. Bruzzone, and D.F. Prieto An adaptive parcel-based technique for unsupervised change detection Int. J. Remote Sens. 21 4 2000 817 822
    • (2000) Int. J. Remote Sens. , vol.21 , Issue.4 , pp. 817-822
    • Bruzzone, L.1    Prieto, D.F.2
  • 7
    • 25844497537 scopus 로고    scopus 로고
    • Land cover classification and change analysis of Twin cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing
    • F. Yuan, K.E. Sawaya, B.C. Loeffelholz, and M.E. Bauer Land cover classification and change analysis of Twin cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing Remote Sens. Environ. 98 2005 317 328
    • (2005) Remote Sens. Environ. , vol.98 , pp. 317-328
    • Yuan, F.1    Sawaya, K.E.2    Loeffelholz, B.C.3    Bauer, M.E.4
  • 8
    • 0034959023 scopus 로고    scopus 로고
    • Monitoring the magnitude of land-cover change around the southern limits of the Sahara
    • G.M. Foody Monitoring the magnitude of land-cover change around the southern limits of the Sahara Photogramm. Eng. Remote Sens. 67 2001 841 847
    • (2001) Photogramm. Eng. Remote Sens. , vol.67 , pp. 841-847
    • Foody, G.M.1
  • 10
    • 33847695328 scopus 로고    scopus 로고
    • A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks
    • S. Ghosh, L. Bruzzone, S. Patra, F. Bovolo, and A. Ghosh A context-sensitive technique for unsupervised change detection based on Hopfield-type neural networks IEEE Trans. Geosci. Remote Sens. 45 3 2007 778 789
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.3 , pp. 778-789
    • Ghosh, S.1    Bruzzone, L.2    Patra, S.3    Bovolo, F.4    Ghosh, A.5
  • 11
    • 58849092857 scopus 로고    scopus 로고
    • An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network
    • S. Ghosh, S. Patra, and A. Ghosh An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network Int. J. Approx. Reason. 50 1 2009 37 50
    • (2009) Int. J. Approx. Reason. , vol.50 , Issue.1 , pp. 37-50
    • Ghosh, S.1    Patra, S.2    Ghosh, A.3
  • 12
    • 0036986484 scopus 로고    scopus 로고
    • Unsupervised change detection methods for remote sensing images
    • F. Melgani, G. Moser, and S.B. Serpico Unsupervised change detection methods for remote sensing images Opt. Eng. 41 12 2002 3288 3297
    • (2002) Opt. Eng. , vol.41 , Issue.12 , pp. 3288-3297
    • Melgani, F.1    Moser, G.2    Serpico, S.B.3
  • 13
    • 41249083722 scopus 로고    scopus 로고
    • Using local transition probability models in Markov random fields for forest change detection
    • D. Liu, K. Song, J.R.G. Townshend, and P. Gong Using local transition probability models in Markov random fields for forest change detection Remote Sens. Environ. 112 5 2008 2222 2231
    • (2008) Remote Sens. Environ. , vol.112 , Issue.5 , pp. 2222-2231
    • Liu, D.1    Song, K.2    Townshend, J.R.G.3    Gong, P.4
  • 14
    • 0036699475 scopus 로고    scopus 로고
    • An image change detection algorithm based on Markov random field models
    • - 1823
    • T. Kasetkasem, and P.K. Varshney An image change detection algorithm based on Markov random field models IEEE Trans. Geosci. Remote Sens. 40 8 2002 1815 -1823
    • (2002) IEEE Trans. Geosci. Remote Sens. , vol.40 , Issue.8 , pp. 1815
    • Kasetkasem, T.1    Varshney, P.K.2
  • 15
    • 0037142193 scopus 로고    scopus 로고
    • Urban change detection based on an artificial neural network
    • X. Liu, and R.G. Lathrop Jr. Urban change detection based on an artificial neural network Int. J. Remote Sens. 23 12 2002 2513 2518
    • (2002) Int. J. Remote Sens. , vol.23 , Issue.12 , pp. 2513-2518
    • Liu, X.1    Lathrop, Jr.R.G.2
  • 16
    • 78649892044 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms for unsupervised change detection in remote sensing images
    • - 715
    • A. Ghosh, N.S. Mishra, and S. Ghosh Fuzzy clustering algorithms for unsupervised change detection in remote sensing images Inf. Sci. 181 4 2011 699 -715
    • (2011) Inf. Sci. , vol.181 , Issue.4 , pp. 699
    • Ghosh, A.1    Mishra, N.S.2    Ghosh, S.3
  • 17
    • 33750109523 scopus 로고    scopus 로고
    • A Hopfield neural network for image change detection
    • G. Pajares A Hopfield neural network for image change detection IEEE Trans. Neural Networks 17 5 2006 1250 1264
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.5 , pp. 1250-1264
    • Pajares, G.1
  • 19
    • 84861903592 scopus 로고    scopus 로고
    • Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images
    • - 2692
    • N.S. Mishra, S. Ghosh, and A. Ghosh Fuzzy clustering algorithms incorporating local information for change detection in remotely sensed images Appl. Soft Comput. 12 2012 2683 -2692
    • (2012) Appl. Soft Comput. , vol.12 , pp. 2683
    • Mishra, N.S.1    Ghosh, S.2    Ghosh, A.3
  • 20
    • 79960146587 scopus 로고    scopus 로고
    • Modified self-Organizing feature map neural network with semi-supervision for change detection in remotely sensed images
    • S.O. Kuznetsov, D.P. Mandal, M.K. Kundu, S.K. Pal, Lecture Notes in Computer Science Springer Heidelberg
    • S. Ghosh, and M. Roy Modified self-Organizing feature map neural network with semi-supervision for change detection in remotely sensed images S.O. Kuznetsov, D.P. Mandal, M.K. Kundu, S.K. Pal, In the Proceedings of Pattern Recognition and Machine Intelligence - 4th International Conference, P R eM I 2011, Moscow, Russia, June 27-July 1, 2011 Lecture Notes in Computer Science vol. 6744 2011 Springer Heidelberg 98 103
    • (2011) The Proceedings of Pattern Recognition and Machine Intelligence - 4th International Conference, P R em i 2011, Moscow, Russia, June 27-July 1, 2011 , vol.6744 VOL. , pp. 98-103
    • Ghosh, S.1    Roy, M.2
  • 21
    • 70450140768 scopus 로고    scopus 로고
    • Semi-supervised Learning Literature Survey
    • University of Wisconsin, Madison
    • X. Zhu, Semi-supervised Learning Literature Survey, Computer Sciences TR1530, University of Wisconsin, Madison, 2008.
    • (2008) Computer Sciences TR1530
    • Zhu, X.1
  • 24
    • 0042377235 scopus 로고    scopus 로고
    • Constrained K-means clustering with background knowledge
    • C.E. Brodley, A.P. Danyluk, Williams College/Morgan Kaufmann Publishers Inc. Williamstown, MA, USA/San Fransisco, USA
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl Constrained K-means clustering with background knowledge C.E. Brodley, A.P. Danyluk, Proceedings 18th International Conference on Machine Learning (ICML-2001) 2001 Williams College/Morgan Kaufmann Publishers Inc. Williamstown, MA, USA/San Fransisco, USA 577 584
    • (2001) Proceedings 18th International Conference on Machine Learning (ICML-2001) , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schroedl, S.4
  • 25
    • 33846040203 scopus 로고    scopus 로고
    • A kernel approach for semisupervised metric learning
    • D.-Y. Yeung, and H. Chang A kernel approach for semisupervised metric learning IEEE Trans. Neural Networks 18 1 2007 141 149
    • (2007) IEEE Trans. Neural Networks , vol.18 , Issue.1 , pp. 141-149
    • Yeung, D.-Y.1    Chang, H.2
  • 27
    • 26444530552 scopus 로고    scopus 로고
    • Semi-supervised multiple classifier systems: Background and research directions
    • N.C. Oza, R. Polikar, J. Kittler, F. Roli, Lecture Notes in Computer Science Springer Seaside, CA, USA
    • F. Roli Semi-supervised multiple classifier systems: background and research directions N.C. Oza, R. Polikar, J. Kittler, F. Roli, Proceedings Multiple Classifier Systems, 6th International Workshop, MCS 2005 Lecture Notes in Computer Science vol. 3541 2005 Springer Seaside, CA, USA 1 11
    • (2005) Proceedings Multiple Classifier Systems, 6th International Workshop, MCS 2005 , vol.3541 VOL. , pp. 1-11
    • Roli, F.1
  • 28
    • 70349327709 scopus 로고    scopus 로고
    • When semi-supervised learning meets ensemble learning
    • J.A. Benediktsson, J. Kittler, F. Roli, Lecture Notes in Computer Science Springer Reykjavik, Iceland
    • Z.-H. Zhou When semi-supervised learning meets ensemble learning J.A. Benediktsson, J. Kittler, F. Roli, Proceedings Multiple Classifier Systems, 8th International Workshop, MCS 2009 Lecture Notes in Computer Science vol. 5519 2009 Springer Reykjavik, Iceland 529 538
    • (2009) Proceedings Multiple Classifier Systems, 8th International Workshop, MCS 2009 , vol.5519 VOL. , pp. 529-538
    • Zhou, Z.-H.1
  • 30
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Z.-H. Zhou, and M. Li Tri-training: exploiting unlabeled data using three classifiers IEEE Trans. Knowl. Data Eng. 17 11 2005 1529 1541
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 31
    • 52649112718 scopus 로고    scopus 로고
    • Change detection of remote sensing images with semi-supervised multilayer perceptron
    • S. Patra, S. Ghosh, and A. Ghosh Change detection of remote sensing images with semi-supervised multilayer perceptron Fundam. Inform. 84 2008 429 442
    • (2008) Fundam. Inform. , vol.84 , pp. 429-442
    • Patra, S.1    Ghosh, S.2    Ghosh, A.3
  • 34
    • 0034227415 scopus 로고    scopus 로고
    • Estimation of elliptical basis function parameters by the em Algorithm with application to speaker verification
    • M.-W. Mak, and S.-Y. Kung Estimation of elliptical basis function parameters by the EM Algorithm with application to speaker verification IEEE Trans. Neural Networks 11 4 2000 961 969
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.4 , pp. 961-969
    • Mak, M.-W.1    Kung, S.-Y.2
  • 36
    • 48749090493 scopus 로고    scopus 로고
    • Greedy regression ensemble selection: Theory and an application to water quality prediction
    • I. Partalas, G. Tsoumakas, E.V. Hatzikos, and I. Vlahavas Greedy regression ensemble selection: theory and an application to water quality prediction Inf. Sci. 178 20 2008 3867 3879
    • (2008) Inf. Sci. , vol.178 , Issue.20 , pp. 3867-3879
    • Partalas, I.1    Tsoumakas, G.2    Hatzikos, E.V.3    Vlahavas, I.4
  • 37
    • 64549132935 scopus 로고    scopus 로고
    • A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral
    • O. Mendoza, P. Melin, and G. Licea A hybrid approach for image recognition combining type-2 fuzzy logic, modular neural networks and the Sugeno integral Inf. Sci. 179 13 2009 2078 2101
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2078-2101
    • Mendoza, O.1    Melin, P.2    Licea, G.3
  • 38
    • 79251598720 scopus 로고    scopus 로고
    • Ensemble of feature sets and classification algorithms for sentiment classification
    • R. Xia, C. Zong, and S. Li Ensemble of feature sets and classification algorithms for sentiment classification Inf. Sci. 181 6 2011 1138 1152
    • (2011) Inf. Sci. , vol.181 , Issue.6 , pp. 1138-1152
    • Xia, R.1    Zong, C.2    Li, S.3
  • 39
    • 80255133268 scopus 로고    scopus 로고
    • A new approach for time series prediction using ensembles of ANFIS models
    • P. Melin, J. Soto, O. Castillo, and J. Soria A new approach for time series prediction using ensembles of ANFIS models Expert Syst. Appl. 39 3 2012 3494 3506
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 3494-3506
    • Melin, P.1    Soto, J.2    Castillo, O.3    Soria, J.4
  • 40
    • 80255137493 scopus 로고    scopus 로고
    • Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system
    • O. Castillo, P. Melin, E. Ramírez, and J. Soria Hybrid intelligent system for cardiac arrhythmia classification with Fuzzy K-Nearest Neighbors and neural networks combined with a fuzzy system Expert Syst. Appl. 39 3 2012 2947 2955
    • (2012) Expert Syst. Appl. , vol.39 , Issue.3 , pp. 2947-2955
    • Castillo, O.1    Melin, P.2    Ramírez, E.3    Soria, J.4
  • 44
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • - 1098
    • M. Li, and Z.-H. Zhou Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples IEEE Trans. Syst. Man Cybern. - Part A: Syst. Humans 37 6 2007 1088 -1098
    • (2007) IEEE Trans. Syst. Man Cybern. - Part A: Syst. Humans , vol.37 , Issue.6 , pp. 1088
    • Li, M.1    Zhou, Z.-H.2
  • 45
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • L.I. Kuncheva, J.C. Bezdek, and R.P. Duin Decision templates for multiple classifier fusion: an experimental comparison Pattern Recognit. 34 2 2001 299 314
    • (2001) Pattern Recognit. , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.I.1    Bezdek, J.C.2    Duin, R.P.3
  • 47
    • 67651236898 scopus 로고    scopus 로고
    • Aggregation pheromone density based pattern classification
    • A. Halder, A. Ghosh, and S. Ghosh Aggregation pheromone density based pattern classification Fundam. Inform. 92 4 2009 345 362
    • (2009) Fundam. Inform. , vol.92 , Issue.4 , pp. 345-362
    • Halder, A.1    Ghosh, A.2    Ghosh, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.