-
1
-
-
77349102455
-
Glycaemic control in type 2 diabetes: targets and new therapies
-
Tahrani A.A., Piya M.K., Kennedy A., Barnett A.H. Glycaemic control in type 2 diabetes: targets and new therapies. Pharmacol. Ther. 2010, 125:328-361.
-
(2010)
Pharmacol. Ther.
, vol.125
, pp. 328-361
-
-
Tahrani, A.A.1
Piya, M.K.2
Kennedy, A.3
Barnett, A.H.4
-
2
-
-
84873707522
-
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
-
Miller R.A., Chu Q., Xie J., Foretz M., Viollet B., Birnbaum M.J. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013, 494:256-260.
-
(2013)
Nature
, vol.494
, pp. 256-260
-
-
Miller, R.A.1
Chu, Q.2
Xie, J.3
Foretz, M.4
Viollet, B.5
Birnbaum, M.J.6
-
3
-
-
84876684394
-
Rosiglitazone induces arrhythmogenesis in diabetic hypertensive rats with calcium handling alteration
-
Lee T.I., Chen Y.C., Kao Y.H., Hsiao F.C., Lin Y.K., Chen Y.J. Rosiglitazone induces arrhythmogenesis in diabetic hypertensive rats with calcium handling alteration. Int. J. Cardiol. 2011, 165:299-307.
-
(2011)
Int. J. Cardiol.
, vol.165
, pp. 299-307
-
-
Lee, T.I.1
Chen, Y.C.2
Kao, Y.H.3
Hsiao, F.C.4
Lin, Y.K.5
Chen, Y.J.6
-
4
-
-
0035857020
-
New drug targets for type 2 diabetes and the metabolic syndrome
-
Moller D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414:821-827.
-
(2001)
Nature
, vol.414
, pp. 821-827
-
-
Moller, D.E.1
-
5
-
-
78649835553
-
Small molecules from natural sources, targeting signaling pathways in diabetes
-
Liu Q., Chen L., Hu L., Guo Y., Shen X. Small molecules from natural sources, targeting signaling pathways in diabetes. Biochim. Biophys. Acta 2010, 1799:854-865.
-
(2010)
Biochim. Biophys. Acta
, vol.1799
, pp. 854-865
-
-
Liu, Q.1
Chen, L.2
Hu, L.3
Guo, Y.4
Shen, X.5
-
6
-
-
0141794300
-
Influence of traditional Chinese anti-inflammatory medicinal plants on leukocyte and platelet functions
-
Prieto J.M., Recio M.C., Giner R.M. Influence of traditional Chinese anti-inflammatory medicinal plants on leukocyte and platelet functions. J. Pharm. Pharmacol. Ther. 2003, 55:1257-1282.
-
(2003)
J. Pharm. Pharmacol. Ther.
, vol.55
, pp. 1257-1282
-
-
Prieto, J.M.1
Recio, M.C.2
Giner, R.M.3
-
7
-
-
33749665999
-
Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence
-
Yuan L.J., Tu D.W., Ye X.L. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis franch inflorescence. Plant Foods Hum. Nutr. 2006, 61:139-144.
-
(2006)
Plant Foods Hum. Nutr.
, vol.61
, pp. 139-144
-
-
Yuan, L.J.1
Tu, D.W.2
Ye, X.L.3
-
8
-
-
79957801121
-
The effect of Coptis chinensis on the signaling network in the squamous carcinoma cells
-
Wang H., Zhang F., Ye F. The effect of Coptis chinensis on the signaling network in the squamous carcinoma cells. Front. Biosci. 2011, 1:326-340.
-
(2011)
Front. Biosci.
, vol.1
, pp. 326-340
-
-
Wang, H.1
Zhang, F.2
Ye, F.3
-
9
-
-
33750543230
-
Effect of jatrorrhizine, berberine, huanglian decoction and compound-mimic prescription on blood glucose in mice
-
Fu Y., Hu B.R., Tang Q. Effect of jatrorrhizine, berberine, huanglian decoction and compound-mimic prescription on blood glucose in mice. Chin. Tradit. Herb. Drugs 2005, 36:548-551.
-
(2005)
Chin. Tradit. Herb. Drugs
, vol.36
, pp. 548-551
-
-
Fu, Y.1
Hu, B.R.2
Tang, Q.3
-
10
-
-
78751551706
-
Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats
-
Zheng Z., Chang B., Li M. Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats. Am. J. Chin. Med. 2011, 39:53-63.
-
(2011)
Am. J. Chin. Med.
, vol.39
, pp. 53-63
-
-
Zheng, Z.1
Chang, B.2
Li, M.3
-
11
-
-
77958614263
-
Pharmacodyamic material basis of Rhizoma Coptidis on insulin resistance
-
Li J.C., Meng X.L., Fan X.J. Pharmacodyamic material basis of Rhizoma Coptidis on insulin resistance. China J. Chin. Mater. Med. 2010, 35:1855-1858.
-
(2010)
China J. Chin. Mater. Med.
, vol.35
, pp. 1855-1858
-
-
Li, J.C.1
Meng, X.L.2
Fan, X.J.3
-
12
-
-
78751664582
-
Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects
-
Jung D.W., Ha H.H., Zheng X., Chang Y.T., Williams D.R. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Mol. Biosyst. 2011, 2:346-358.
-
(2011)
Mol. Biosyst.
, vol.2
, pp. 346-358
-
-
Jung, D.W.1
Ha, H.H.2
Zheng, X.3
Chang, Y.T.4
Williams, D.R.5
-
13
-
-
84865079644
-
The role of dietary fatty acids in the pathology of metabolic syndrome
-
Lottenberg A.M., Afonso M.S., Lavrador M.S., Machado R.M., Nakandakare E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012, 23:1027-1040.
-
(2012)
J. Nutr. Biochem.
, vol.23
, pp. 1027-1040
-
-
Lottenberg, A.M.1
Afonso, M.S.2
Lavrador, M.S.3
Machado, R.M.4
Nakandakare, E.R.5
-
14
-
-
84880974817
-
Adipokines mediate inflammation and insulin resistance
-
Kwon H., Pessin J.E. Adipokines mediate inflammation and insulin resistance. Front. Endocrinol. 2013, 4:71.
-
(2013)
Front. Endocrinol.
, vol.4
, pp. 71
-
-
Kwon, H.1
Pessin, J.E.2
-
15
-
-
33644770179
-
A key adipocytokine in metabolic syndrome
-
Okamoto Y., Kihara S., Funahashi T., Matsuzawa Y., Adiponectin Libby P. A key adipocytokine in metabolic syndrome. Clin. Sci. 2006, 110:267-278.
-
(2006)
Clin. Sci.
, vol.110
, pp. 267-278
-
-
Okamoto, Y.1
Kihara, S.2
Funahashi, T.3
Matsuzawa, Y.4
Adiponectin, L.P.5
-
16
-
-
18844432308
-
Adiponectin and adiponectin receptors
-
Kadowaki T., Yamauchi T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005, 26:439-451.
-
(2005)
Endocr. Rev.
, vol.26
, pp. 439-451
-
-
Kadowaki, T.1
Yamauchi, T.2
-
18
-
-
0034107525
-
Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice
-
Lin S., Thomas T.C., Storlien L.H., Huang X.F. Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int. J. Obes. Relat. Metab. Disord. 2000, 24:639-646.
-
(2000)
Int. J. Obes. Relat. Metab. Disord.
, vol.24
, pp. 639-646
-
-
Lin, S.1
Thomas, T.C.2
Storlien, L.H.3
Huang, X.F.4
-
19
-
-
84869861336
-
Functional and structural features of adipokine family
-
Raucci R., Rusolo F., Sharma A., Colonna G., Castello G., Costantini S. Functional and structural features of adipokine family. Cytokine 2013, 61:1-14.
-
(2013)
Cytokine
, vol.61
, pp. 1-14
-
-
Raucci, R.1
Rusolo, F.2
Sharma, A.3
Colonna, G.4
Castello, G.5
Costantini, S.6
-
20
-
-
33745896155
-
Recent advances in the relationship between obesity, inflammation, and insulin resistance
-
Bastard J.P., Maachi M., Lagathu C., Kim M.J., Caron M., Vidal H., et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17:4-12.
-
(2006)
Eur. Cytokine Netw.
, vol.17
, pp. 4-12
-
-
Bastard, J.P.1
Maachi, M.2
Lagathu, C.3
Kim, M.J.4
Caron, M.5
Vidal, H.6
-
21
-
-
84868151472
-
Differential development of glucose intolerance and pancreatic islet adaptation in multiple diet induced obesity models
-
Omar B., Pacini G., Ahren B. Differential development of glucose intolerance and pancreatic islet adaptation in multiple diet induced obesity models. Nutrients 2012, 4:1367-1381.
-
(2012)
Nutrients
, vol.4
, pp. 1367-1381
-
-
Omar, B.1
Pacini, G.2
Ahren, B.3
-
22
-
-
0035856949
-
Insulin signalling and the regulation of glucose and lipid metabolism
-
Saltiel A.R., Kahn C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414:799-806.
-
(2001)
Nature
, vol.414
, pp. 799-806
-
-
Saltiel, A.R.1
Kahn, C.R.2
-
23
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C., Gerhart-Hines Z., Feige J.N., Lagouge M., Noriega L., Milne J.C., et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
-
24
-
-
79953898189
-
Sirtuin 1 in lipid metabolism and obesity
-
Schug T., Li X. Sirtuin 1 in lipid metabolism and obesity. Ann. Med. 2011, 43:198-211.
-
(2011)
Ann. Med.
, vol.43
, pp. 198-211
-
-
Schug, T.1
Li, X.2
-
25
-
-
77957571019
-
7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro
-
Zhang W.Y., Lee J.J., Kim I.S., Kim Y., Park J.S., Myung C.S. 7-O-methylaromadendrin stimulates glucose uptake and improves insulin resistance in vitro. Biol. Pharm. Bull. 2010, 33:1494-1499.
-
(2010)
Biol. Pharm. Bull.
, vol.33
, pp. 1494-1499
-
-
Zhang, W.Y.1
Lee, J.J.2
Kim, I.S.3
Kim, Y.4
Park, J.S.5
Myung, C.S.6
-
26
-
-
33947596679
-
The GLUT4 glucose transporter
-
Huang S., Czech M.P. The GLUT4 glucose transporter. Cell Metab. 2007, 5:237-252.
-
(2007)
Cell Metab.
, vol.5
, pp. 237-252
-
-
Huang, S.1
Czech, M.P.2
-
27
-
-
67650914230
-
AMPK in health and disease
-
Steinberg G.R., Kemp B.E. AMPK in health and disease. Physiol. Rev. 2009, 89:1025-1078.
-
(2009)
Physiol. Rev.
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
28
-
-
65349177200
-
AMPK: an emerging drug target for diabetes and the metabolic syndrome
-
Zhang B.B., Zhou G., Li C. AMPK: an emerging drug target for diabetes and the metabolic syndrome. Cell Metab. 2009, 9:407-416.
-
(2009)
Cell Metab.
, vol.9
, pp. 407-416
-
-
Zhang, B.B.1
Zhou, G.2
Li, C.3
-
29
-
-
1542618348
-
The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress
-
Shaw R.J., Kosmatka M., Bardeesy N., Hurley R.L., Witters L.A., DePinho R.A., et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl. Acad. Sci. U. S. A. 2004, 101:3329-3335.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 3329-3335
-
-
Shaw, R.J.1
Kosmatka, M.2
Bardeesy, N.3
Hurley, R.L.4
Witters, L.A.5
DePinho, R.A.6
-
30
-
-
23844471263
-
The Ca2+/Calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases
-
Hurley R.L., Anderson K.A., Franzone J.M., Kemp B.E., Means A.R., Witters L.A. The Ca2+/Calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 2005, 280:29060-29066.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29060-29066
-
-
Hurley, R.L.1
Anderson, K.A.2
Franzone, J.M.3
Kemp, B.E.4
Means, A.R.5
Witters, L.A.6
-
31
-
-
0033610891
-
Components of a calmodulin-dependent protein kinase cascade Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase β
-
Anderson K.A., Means R.L., Huang Q.H., Kemp B.E., Goldstein E.G., Selbert M.A., et al. Components of a calmodulin-dependent protein kinase cascade Molecular cloning, functional characterization and cellular localization of Ca2+/calmodulin-dependent protein kinase β. J. Biol. Chem. 1998, 273:31880-31889.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 31880-31889
-
-
Anderson, K.A.1
Means, R.L.2
Huang, Q.H.3
Kemp, B.E.4
Goldstein, E.G.5
Selbert, M.A.6
-
32
-
-
42649105456
-
Hypothalamic CaMKK2Contributes to the regulation of energy balance
-
Anderson K.A., Ribar T.J., Lin F., Noeldner P.K., Green M.F., Muehlbauer M.J., et al. Hypothalamic CaMKK2Contributes to the regulation of energy balance. Cell Metab. 2008, 7:377-388.
-
(2008)
Cell Metab.
, vol.7
, pp. 377-388
-
-
Anderson, K.A.1
Ribar, T.J.2
Lin, F.3
Noeldner, P.K.4
Green, M.F.5
Muehlbauer, M.J.6
-
33
-
-
30944448596
-
Chutes and Ladders The search for protein kinases that act on AMPK
-
13-6
-
Witters L.A., Kemp B.E., Means A.R. Chutes and Ladders The search for protein kinases that act on AMPK. Trends Biochem. Sci. 2006, 31. 13-6.
-
(2006)
Trends Biochem. Sci.
, vol.31
-
-
Witters, L.A.1
Kemp, B.E.2
Means, A.R.3
|