메뉴 건너뛰기




Volumn 71, Issue , 2015, Pages 1-10

Towards dropout training for convolutional neural networks

Author keywords

Convolutional neural networks; Deep learning; Max pooling dropout

Indexed keywords

NEURAL NETWORKS; STOCHASTIC SYSTEMS;

EID: 84939541134     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2015.07.007     Document Type: Article
Times cited : (262)

References (20)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313:504-507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 7
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaption of feature detectors.
    • arxiv:1207.0580
    • Hinton, G. E., Srivastave, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaption of feature detectors. arxiv:1207.0580.
    • (2012)
    • Hinton, G.E.1    Srivastave, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.R.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.