|
Volumn 71, Issue , 2015, Pages 1-10
|
Towards dropout training for convolutional neural networks
|
Author keywords
Convolutional neural networks; Deep learning; Max pooling dropout
|
Indexed keywords
NEURAL NETWORKS;
STOCHASTIC SYSTEMS;
CONVOLUTIONAL NEURAL NETWORK;
DATA AUGMENTATION;
DEEP LEARNING;
MAX-POOLING;
MODEL AVERAGING;
MULTINOMIAL DISTRIBUTIONS;
STATE-OF-THE-ART PERFORMANCE;
STOCHASTICITY;
CONVOLUTION;
ARTICLE;
ARTIFICIAL NEURAL NETWORK;
CONVOLUTIONAL NEURAL NETWORK;
INFORMATION PROCESSING;
INTERMETHOD COMPARISON;
MACHINE LEARNING;
MATHEMATICAL PARAMETERS;
MAX POOLING DROPOUT;
PRIORITY JOURNAL;
PROBABILISTIC WEIGHTED POOLING;
PROCESS OPTIMIZATION;
QUALITY CONTROL;
STOCHASTIC POOLING;
VALIDATION STUDY;
ALGORITHM;
MARKOV CHAIN;
STATISTICAL MODEL;
ALGORITHMS;
MACHINE LEARNING;
MODELS, STATISTICAL;
NEURAL NETWORKS (COMPUTER);
STOCHASTIC PROCESSES;
|
EID: 84939541134
PISSN: 08936080
EISSN: 18792782
Source Type: Journal
DOI: 10.1016/j.neunet.2015.07.007 Document Type: Article |
Times cited : (262)
|
References (20)
|