메뉴 건너뛰기




Volumn 14, Issue , 2013, Pages 3385-3418

Sparse matrix inversion with scaled lasso

Author keywords

Concentration matrix; Graphical model; Inverse matrix; Linear regression; Precision matrix; Scaled Lasso; Spectrum norm

Indexed keywords

GRAPHICAL MODEL; INVERSE MATRIX; PRECISION MATRIX; SCALED LASSO; SPECTRUM NORM;

EID: 84890020327     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (134)

References (34)
  • 1
    • 84857076122 scopus 로고    scopus 로고
    • Map model selection in gaussian regression
    • F. Abramovich and V. Grinshtein. Map model selection in gaussian regression. Electr. J. Statist., 4: 932-949, 2010.
    • (2010) Electr. J. Statist , vol.4 , pp. 932-949
    • Abramovich, F.1    Grinshtein, V.2
  • 2
    • 77955052583 scopus 로고    scopus 로고
    • Comments on: ℓ1-penalization for mixture regression models
    • A. Antoniadis. Comments on: ℓ1-penalization for mixture regression models. Test, 19(2):257-258, 2010.
    • (2010) Test , vol.19 , Issue.2 , pp. 257-258
    • Antoniadis, A.1
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • O. Banerjee, L. El Ghaoui, and A. d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008. (Pubitemid 351469014)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    D'Aspremont, A.3
  • 4
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of lasso and dantzig selector
    • P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Annals of Statistics, 37(4):1705-1732, 2009.
    • (2009) Annals of Statistics , vol.37 , Issue.4 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 5
    • 0003281721 scopus 로고    scopus 로고
    • Gaussian model selection
    • L. Birge and P. Massart. Gaussian model selection. J. Eur. Math. Soc., 3:203-268, 2001.
    • (2001) J. Eur. Math. Soc , vol.3 , pp. 203-268
    • Birge, L.1    Massart, P.2
  • 7
    • 0001639899 scopus 로고
    • The brunn-minkowski inequality in gaussian space
    • C. Borell. The brunn-minkowski inequality in gaussian space. Invent. Math., 30:207-216, 1975.
    • (1975) Invent. Math , vol.30 , pp. 207-216
    • Borell, C.1
  • 8
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for gaussian regression
    • F. Bunea, A. Tsybakov, and M.H.Wegkamp. Aggregation for gaussian regression. Ann. Statist., 35: 1674-1697, 2007.
    • (2007) Ann. Statist , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.H.3
  • 9
  • 10
    • 79960110811 scopus 로고    scopus 로고
    • A constrained ℓ1 minimization approach to sparse precision matrix estimation
    • T. Cai, W. Liu, and X. Luo. A constrained ℓ1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106:594-607, 2011.
    • (2011) Journal of the American Statistical Association , vol.106 , pp. 594-607
    • Cai, T.1    Liu, W.2    Luo, X.3
  • 11
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. on Information Theory, 51:4203-4215, 2005. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 12
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n (with discussion)
    • E. J. Candès and T. Tao. The dantzig selector: statistical estimation when p is much larger than n (with discussion). Annals of Statistics, 35:2313-2404, 2007.
    • (2007) Annals of Statistics , vol.35 , pp. 2313-2404
    • Candès, E.J.1    Tao, T.2
  • 14
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • DOI 10.1093/biostatistics/kxm045
    • J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graphical Lasso. Biostatistics, 9:432-441, 2008. (Pubitemid 351882084)
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 72249100613 scopus 로고    scopus 로고
    • The dantzig selector and sparsity oracle inequalities
    • V. Koltchinskii. The dantzig selector and sparsity oracle inequalities. Bernoulli, 15:799-828, 2009.
    • (2009) Bernoulli , vol.15 , pp. 799-828
    • Koltchinskii, V.1
  • 17
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrices estimation
    • C. Lam and J. Fan. Sparsistency and rates of convergence in large covariance matrices estimation. Annals of Statistics, 37:4254-4278, 2009.
    • (2009) Annals of Statistics , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 18
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • DOI 10.1214/009053606000000281
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics, 34:1436-1462, 2006. (Pubitemid 44231168)
    • (2006) Annals of Statistics , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 19
    • 84871600478 scopus 로고    scopus 로고
    • A unified framework for highdimensional analysis of m-estimators with decomposable regularizers
    • S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for highdimensional analysis of M-estimators with decomposable regularizers. Statistical Science, 27: 538-557, 2012.
    • (2012) Statistical Science , vol.27 , pp. 538-557
    • Negahban, S.1    Ravikumar, P.2    Wainwright, M.J.3    Yu, B.4
  • 20
    • 80053974183 scopus 로고    scopus 로고
    • Minimax rates of estimation for high-dimensional linear regression over ℓq-balls
    • G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear regression over ℓq-balls. IEEE Trans. Info. Theory, 57:6976-6994, 2011.
    • (2011) IEEE Trans. Info. Theory , vol.57 , pp. 6976-6994
    • Raskutti, G.1    Wainwright, M.J.2    Yu, B.3
  • 24
    • 84869449202 scopus 로고    scopus 로고
    • Scaled sparse linear regression
    • T. Sun and C.-H. Zhang. Scaled sparse linear regression. Biometrika, 99:879-898, 2012.
    • (2012) Biometrika , vol.99 , pp. 879-898
    • Sun, T.1    Zhang, C.-H.2
  • 25
    • 79551473604 scopus 로고    scopus 로고
    • The deterministic lasso
    • ETH Zurich, Switzerland
    • S. van de Geer. The deterministic Lasso. Technical Report 140, ETH Zurich, Switzerland, 2007.
    • (2007) Technical Report 140
    • Geer De S.Van1
  • 26
    • 77955054299 scopus 로고    scopus 로고
    • On the conditions used to prove oracle results for the lasso
    • S. van de Geer and P. Bühlmann. On the conditions used to prove oracle results for the Lasso. Electronic Journal of Statistics, 3:1360-1392, 2009.
    • (2009) Electronic Journal of Statistics , vol.3 , pp. 1360-1392
    • Geer De S.Van1    Bühlmann, P.2
  • 28
    • 79551503968 scopus 로고    scopus 로고
    • Rate minimaxity of thelasso and dantzig selector for the ℓq loss in ℓr balls
    • F. Ye and C.-H. Zhang. Rate minimaxity of theLasso and Dantzig selector for the ℓq loss in ℓr balls. Journal of Machine Learning Research, 11:3481-3502, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 3481-3502
    • Ye, F.1    Zhang, C.-H.2
  • 29
    • 77956916683 scopus 로고    scopus 로고
    • Sparse inverse covariance matrix estimation via linear programming
    • M. Yuan. Sparse inverse covariance matrix estimation via linear programming. Journal of Machine Learning Research, 11:2261-2286, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2261-2286
    • Yuan, M.1
  • 30
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • DOI 10.1093/biomet/asm018
    • M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model. Biometrika, 94(1):19-35, 2007. (Pubitemid 46410725)
    • (2007) Biometrika , vol.94 , Issue.1 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 31
    • 77649284492 scopus 로고    scopus 로고
    • Nearly unbiased variable selection under minimax concave penalty
    • C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Annals of Statistics, 38:894-942, 2010.
    • (2010) Annals of Statistics , vol.38 , pp. 894-942
    • Zhang, C.-H.1
  • 32
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the lasso selection in high-dimensional linear regression
    • C.-H. Zhang and J. Huang. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Annals of Statistics, 36(4):1567-1594, 2008.
    • (2008) Annals of Statistics , vol.36 , Issue.4 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 33
    • 84871532743 scopus 로고    scopus 로고
    • A general theory of concave regularization for high dimensional sparse estimation problems
    • C.-H. Zhang and T. Zhang. A general theory of concave regularization for high dimensional sparse estimation problems. Statistical Science, 27(4):576-593, 2012.
    • (2012) Statistical Science , vol.27 , Issue.4 , pp. 576-593
    • Zhang, C.-H.1    Zhang, T.2
  • 34
    • 69049086702 scopus 로고    scopus 로고
    • Some sharp performance bounds for least squares regression with l1 regularization
    • T. Zhang. Some sharp performance bounds for least squares regression with L1 regularization. Ann. Statist., 37(5A):2109-2144, 2009.
    • (2009) Ann. Statist , vol.37 , Issue.5 A , pp. 2109-2144
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.