메뉴 건너뛰기




Volumn 75, Issue 4, 2013, Pages 603-680

Large covariance estimation by thresholding principal orthogonal complements

Author keywords

Approximate factor model; Cross sectional correlation; Diverging eigenvalues; High dimensionality; Low rank matrix; Principal components; Sparse matrix; Thresholding; Unknown factors

Indexed keywords


EID: 84881566884     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12016     Document Type: Article
Times cited : (751)

References (147)
  • 1
    • 84872015802 scopus 로고    scopus 로고
    • Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions
    • Agarwal, A., Negahban, S. and Wainwright, M. J. (2012) Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions. Ann. Statist., 40, 1171-1197.
    • (2012) Ann. Statist. , vol.40 , pp. 1171-1197
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.J.3
  • 2
    • 0346507483 scopus 로고    scopus 로고
    • GMM estimation of linear panel data models with time-varying individual effects
    • Ahn, S., Lee, Y. and Schmidt, P. (2001) GMM estimation of linear panel data models with time-varying individual effects. J. Econmetr., 101, 219-255.
    • (2001) J. Econmetr. , vol.101 , pp. 219-255
    • Ahn, S.1    Lee, Y.2    Schmidt, P.3
  • 3
    • 77958467466 scopus 로고    scopus 로고
    • Improved penalization for determining the number of factors in approximate factor models
    • Alessi, L., Barigozzi, M. and Capassoc, M. (2010) Improved penalization for determining the number of factors in approximate factor models. Statist. Probab. Lett., 80, 1806-1813.
    • (2010) Statist. Probab. Lett. , vol.80 , pp. 1806-1813
    • Alessi, L.1    Barigozzi, M.2    Capassoc, M.3
  • 4
    • 69049101180 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • Amini, A. A. and Wainwright, M. J. (2009) High-dimensional analysis of semidefinite relaxations for sparse principal components. Ann. Statist., 37, 2877-2921.
    • (2009) Ann. Statist. , vol.37 , pp. 2877-2921
    • Amini, A.A.1    Wainwright, M.J.2
  • 5
    • 0442312210 scopus 로고    scopus 로고
    • Regularized wavelet approximations
    • Antoniadis, A. and Fan, J. (2001) Regularized wavelet approximations. J. Am. Statist. Ass., 96, 939-967.
    • (2001) J. Am. Statist. Ass. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 6
    • 48849086355 scopus 로고    scopus 로고
    • Optimal solutions for sparse principal component analysis
    • d'Aspremont, A., Bach, F. and El Ghaoui, L. (2008) Optimal solutions for sparse principal component analysis. J. Mach. Learn. Res., 9, 1269-1294.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1269-1294
    • d'Aspremont, A.1    Bach, F.2    El Ghaoui, L.3
  • 8
    • 0037277111 scopus 로고    scopus 로고
    • Inferential theory for factor models of large dimensions
    • Bai, J. (2003) Inferential theory for factor models of large dimensions. Econometrica, 71, 135-171.
    • (2003) Econometrica , vol.71 , pp. 135-171
    • Bai, J.1
  • 9
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai, J. and Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica, 70, 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 10
    • 79953189262 scopus 로고    scopus 로고
    • Large dimensional factor analysis
    • Bai, J. and Ng, S. (2008) Large dimensional factor analysis. Found. Trends Econmetr., 3, 89-163.
    • (2008) Found. Trends Econmetr. , vol.3 , pp. 89-163
    • Bai, J.1    Ng, S.2
  • 11
    • 80052702459 scopus 로고    scopus 로고
    • Estimating high dimensional covariance matrices and its applications
    • Bai, J. and Shi, S. (2011) Estimating high dimensional covariance matrices and its applications. Ann. Econ. Finan., 12, 199-215.
    • (2011) Ann. Econ. Finan. , vol.12 , pp. 199-215
    • Bai, J.1    Shi, S.2
  • 12
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel, P. and Levina, E. (2008) Covariance regularization by thresholding. Ann. Statist., 36, 2577-2604.
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.1    Levina, E.2
  • 13
    • 84881596632 scopus 로고    scopus 로고
    • Minimax bounds for sparse PCA with noisy high-dimensional data
    • To be published.
    • Birnbaum, A., Johnstone, I., Nadler, B. and Paul, D. (2012) Minimax bounds for sparse PCA with noisy high-dimensional data. Ann. Statist., to be published.
    • (2012) Ann. Statist.
    • Birnbaum, A.1    Johnstone, I.2    Nadler, B.3    Paul, D.4
  • 14
    • 33646162895 scopus 로고    scopus 로고
    • Are more data always better for factor analysis?
    • Boivin, J. and Ng, S. (2006) Are more data always better for factor analysis? J. Econmetr., 132, 169-194.
    • (2006) J. Econmetr. , vol.132 , pp. 169-194
    • Boivin, J.1    Ng, S.2
  • 15
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • Cai, J., Candès, E. and Shen, Z. (2008) A singular value thresholding algorithm for matrix completion. SIAM J. Optimizn, 20, 1956-1982.
    • (2008) SIAM J. Optimizn , vol.20 , pp. 1956-1982
    • Cai, J.1    Candès, E.2    Shen, Z.3
  • 16
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • Cai, T. and Liu, W. (2011) Adaptive thresholding for sparse covariance matrix estimation. J. Am. Statist. Ass., 106, 672-684.
    • (2011) J. Am. Statist. Ass. , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 17
    • 84861177057 scopus 로고    scopus 로고
    • Optimal rates of convergence for sparse covariance matrix estimation
    • Cai, T. and Zhou, H. (2012) Optimal rates of convergence for sparse covariance matrix estimation. Ann. Statist., 40, 2389-2420.
    • (2012) Ann. Statist. , vol.40 , pp. 2389-2420
    • Cai, T.1    Zhou, H.2
  • 19
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modeling: applications in gene expression genomics
    • Carvalho, C., Chang, J., Lucas, J., Nevins, J., Wang, Q. and West, M. (2008) High-dimensional sparse factor modeling: applications in gene expression genomics. J. Am. Statist. Ass., 103, 1438-1456.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 1438-1456
    • Carvalho, C.1    Chang, J.2    Lucas, J.3    Nevins, J.4    Wang, Q.5    West, M.6
  • 20
    • 0000915180 scopus 로고
    • Arbitrage, factor structure and mean-variance analysis in large asset markets
    • Chamberlain, G. and Rothschild, M. (1983) Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica, 51, 1305-1324.
    • (1983) Econometrica , vol.51 , pp. 1305-1324
    • Chamberlain, G.1    Rothschild, M.2
  • 21
    • 0014751986 scopus 로고
    • The rotation of eigenvectors by a perturbation III
    • Davis, C. and Kahan, W. (1970) The rotation of eigenvectors by a perturbation III. SIAM J. Numer. Anal., 7, 1-46.
    • (1970) SIAM J. Numer. Anal. , vol.7 , pp. 1-46
    • Davis, C.1    Kahan, W.2
  • 22
    • 79960364553 scopus 로고    scopus 로고
    • A two-step estimator for large approximate dynamic factor models based on Kalman filtering
    • Doz, C., Giannone, D. and Reichlin, L. (2011) A two-step estimator for large approximate dynamic factor models based on Kalman filtering. J. Econmetr., 164, 188-205.
    • (2011) J. Econmetr. , vol.164 , pp. 188-205
    • Doz, C.1    Giannone, D.2    Reichlin, L.3
  • 23
    • 33947216221 scopus 로고    scopus 로고
    • Correlation and large-scale simultaneous significance testing
    • Efron, B. (2007) Correlation and large-scale simultaneous significance testing. J. Am. Statist. Ass., 102, 93-103.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 93-103
    • Efron, B.1
  • 24
    • 77951948076 scopus 로고    scopus 로고
    • Correlated z-values and the accuracy of large-scale statistical estimates
    • Efron, B. (2010) Correlated z-values and the accuracy of large-scale statistical estimates. J. Am. Statist. Ass., 105, 1042-1055.
    • (2010) J. Am. Statist. Ass. , vol.105 , pp. 1042-1055
    • Efron, B.1
  • 25
    • 84977737676 scopus 로고
    • The cross-section of expected stock returns
    • Fama, E. and French, K. (1992) The cross-section of expected stock returns. J. Finan., 47, 427-465.
    • (1992) J. Finan. , vol.47 , pp. 427-465
    • Fama, E.1    French, K.2
  • 26
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • Fan, J., Fan, Y. and Lv, J. (2008) High dimensional covariance matrix estimation using a factor model. J. Econmetr., 147, 186-197.
    • (2008) J. Econmetr. , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 27
    • 84870709284 scopus 로고    scopus 로고
    • Control of the false discovery rate under arbitrary covariance dependence (with discussion)
    • Fan, J., Han, X. and Gu, W. (2012) Control of the false discovery rate under arbitrary covariance dependence (with discussion). J. Am. Statist. Ass., 107, 1019-1048.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 1019-1048
    • Fan, J.1    Han, X.2    Gu, W.3
  • 28
    • 84906280924 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation in approximate factor models
    • Fan, J., Liao, Y. and Mincheva, M. (2011a) High dimensional covariance matrix estimation in approximate factor models. Ann. Statist., 39, 3320-3356.
    • (2011) Ann. Statist. , vol.39 , pp. 3320-3356
    • Fan, J.1    Liao, Y.2    Mincheva, M.3
  • 29
    • 84881582962 scopus 로고    scopus 로고
    • Large covariance estimation by thresholding principal orthogonal complements. Preprint arxiv.org/pdf/1201.0175.pdf.
    • Fan, J., Liao, Y. and Mincheva, M. (2011b) Large covariance estimation by thresholding principal orthogonal complements. Preprint arxiv.org/pdf/1201.0175.pdf.
    • (2011)
    • Fan, J.1    Liao, Y.2    Mincheva, M.3
  • 30
    • 84864394076 scopus 로고    scopus 로고
    • Vast portfolio selection with gross-exposure constraints
    • Fan, J., Zhang, J. and Yu, K. (2012) Vast portfolio selection with gross-exposure constraints. J. Am. Statist. Ass., 107, 592-606.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 592-606
    • Fan, J.1    Zhang, J.2    Yu, K.3
  • 31
    • 0034364595 scopus 로고    scopus 로고
    • The generalized dynamic factor model: identification and estimation
    • Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000) The generalized dynamic factor model: identification and estimation. Rev. Econ. Statist., 82, 540-554.
    • (2000) Rev. Econ. Statist. , vol.82 , pp. 540-554
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 32
    • 1642324121 scopus 로고    scopus 로고
    • The generalized dynamic factor model consistency and rates
    • Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2004) The generalized dynamic factor model consistency and rates. J. Econmetr., 119, 231-255.
    • (2004) J. Econmetr. , vol.119 , pp. 231-255
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 33
    • 0035634831 scopus 로고    scopus 로고
    • The generalized dynamic factor model: representation theory
    • Forni, M. and Lippi, M. (2001) The generalized dynamic factor model: representation theory. Econmetr. Theor., 17, 1113-1141.
    • (2001) Econmetr. Theor. , vol.17 , pp. 1113-1141
    • Forni, M.1    Lippi, M.2
  • 34
    • 84881578054 scopus 로고    scopus 로고
    • High-dimensional volatility matrix estimation via wavelets and thresholding
    • London School of Economics and Political Science, London.
    • Fryzlewicz, P. (2012) High-dimensional volatility matrix estimation via wavelets and thresholding. Manuscript. London School of Economics and Political Science, London.
    • (2012) Manuscript
    • Fryzlewicz, P.1
  • 35
    • 34250778808 scopus 로고    scopus 로고
    • Determining the number of factors in the general dynamic factor model
    • Hallin, M. and Liška, R. (2007) Determining the number of factors in the general dynamic factor model. J. Am. Statist. Ass., 102, 603-617.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 603-617
    • Hallin, M.1    Liška, R.2
  • 36
    • 79956359129 scopus 로고    scopus 로고
    • Dynamic factors in the presence of blocks
    • Hallin, M. and Liška, R. (2011) Dynamic factors in the presence of blocks. J. Econmetr., 163, 29-41.
    • (2011) J. Econmetr. , vol.163 , pp. 29-41
    • Hallin, M.1    Liška, R.2
  • 39
    • 0035641726 scopus 로고    scopus 로고
    • On the distribution of the largest eigenvalue in principal components analysis
    • Johnstone, I. M. (2001) On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist., 29, 295-327.
    • (2001) Ann. Statist. , vol.29 , pp. 295-327
    • Johnstone, I.M.1
  • 40
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone, I. M. and Lu, A. Y. (2009) On consistency and sparsity for principal components analysis in high dimensions. J. Am. Statist. Ass., 104, 682-693.
    • (2009) J. Am. Statist. Ass. , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 41
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • Jung, S. and Marron, J. S. (2009) PCA consistency in high dimension, low sample size context. Ann. Statist., 37, 4104-4130.
    • (2009) Ann. Statist. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 42
    • 78649393421 scopus 로고    scopus 로고
    • A testing procedure for determining the number of factors in approximate factor models with large datasets
    • Kapetanios, G. (2010) A testing procedure for determining the number of factors in approximate factor models with large datasets. J. Bus. Econ. Statist., 28, 397-409.
    • (2010) J. Bus. Econ. Statist. , vol.28 , pp. 397-409
    • Kapetanios, G.1
  • 43
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • Lam, C. and Fan, J. (2009) Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Statist., 37, 4254-4278.
    • (2009) Ann. Statist. , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 45
    • 57749084635 scopus 로고    scopus 로고
    • A general framework for multiple testing dependence
    • Leek, J. and Storey, J. (2008) A general framework for multiple testing dependence. Proc. Natn. Acad. Sci. USA, 105, 18718-18723.
    • (2008) Proc. Natn. Acad. Sci. USA , vol.105 , pp. 18718-18723
    • Leek, J.1    Storey, J.2
  • 47
    • 84881573889 scopus 로고    scopus 로고
    • High dimensional low rank and sparse covariance matrix estimation via convex minimization
    • University of Pennsylvania, Philadelphia.
    • Luo, X. (2011) High dimensional low rank and sparse covariance matrix estimation via convex minimization. Manuscript. University of Pennsylvania, Philadelphia.
    • (2011) Manuscript
    • Luo, X.1
  • 48
    • 84877623616 scopus 로고    scopus 로고
    • Sparse principal components analysis and iterative thresholding
    • to be published.
    • Ma, Z. (2013) Sparse principal components analysis and iterative thresholding. Ann. Statist., to be published.
    • (2013) Ann. Statist
    • Ma, Z.1
  • 49
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the Lasso
    • Meinshausen, N. and Bühlmann, P. (2006) High dimensional graphs and variable selection with the Lasso. Ann. Statist., 34, 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 50
    • 78650967353 scopus 로고    scopus 로고
    • Determining the number of factors from empirical distribution of eigenvalues
    • Onatski, A. (2010) Determining the number of factors from empirical distribution of eigenvalues. Rev. Econ. Statist., 92, 1004-1016.
    • (2010) Rev. Econ. Statist. , vol.92 , pp. 1004-1016
    • Onatski, A.1
  • 51
    • 84875121858 scopus 로고    scopus 로고
    • Posterior contraction in sparse Bayesian factor models for massive covariance matrices
    • Duke University, Durham.
    • Pati, D., Bhattacharya, A., Pillai, N. and Dunson, D. (2012) Posterior contraction in sparse Bayesian factor models for massive covariance matrices. Manuscript. Duke University, Durham.
    • (2012) Manuscript
    • Pati, D.1    Bhattacharya, A.2    Pillai, N.3    Dunson, D.4
  • 52
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul, D. (2007) Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sin., 17, 1617-1642.
    • (2007) Statist. Sin. , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 53
    • 33745290412 scopus 로고    scopus 로고
    • Estimation and inference in large heterogeneous panels with a multifactor error structure
    • Pesaran, M. H. (2006) Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 74, 967-1012.
    • (2006) Econometrica , vol.74 , pp. 967-1012
    • Pesaran, M.H.1
  • 55
    • 84881593334 scopus 로고    scopus 로고
    • On the sparsity assumption of the idiosyncratic errors covariance matrix-Support from the FTSE 100 stock returns
    • University of Warwick, Coventry.
    • Phan, Q. (2012) On the sparsity assumption of the idiosyncratic errors covariance matrix-Support from the FTSE 100 stock returns. Manuscript. University of Warwick, Coventry.
    • (2012) Manuscript
    • Phan, Q.1
  • 56
    • 49549135545 scopus 로고
    • The arbitrage theory of capital asset pricing
    • Ross, S. A. (1976) The arbitrage theory of capital asset pricing. J. Econ. Theor., 13, 341-360.
    • (1976) J. Econ. Theor. , vol.13 , pp. 341-360
    • Ross, S.A.1
  • 57
    • 70350337963 scopus 로고    scopus 로고
    • Generalized thresholding of large covariance matrices
    • Rothman, A., Levina, E. and Zhu, J. (2009) Generalized thresholding of large covariance matrices. J. Am. Statist. Ass., 104, 177-186.
    • (2009) J. Am. Statist. Ass. , vol.104 , pp. 177-186
    • Rothman, A.1    Levina, E.2    Zhu, J.3
  • 58
    • 77954538566 scopus 로고    scopus 로고
    • The econometrics of mean-variance efficiency tests: a survey
    • Sentana, E. (2009) The econometrics of mean-variance efficiency tests: a survey. Econometr. J., 12, 65-101.
    • (2009) Econometr. J. , vol.12 , pp. 65-101
    • Sentana, E.1
  • 59
    • 84980092818 scopus 로고
    • Capital asset prices: a theory of market equilibrium under conditions of risks
    • Sharpe, W. (1964) Capital asset prices: a theory of market equilibrium under conditions of risks. J. Finan., 19, 425-442.
    • (1964) J. Finan. , vol.19 , pp. 425-442
    • Sharpe, W.1
  • 60
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • Shen, H. and Huang, J. (2008) Sparse principal component analysis via regularized low rank matrix approximation. J. Multiv. Anal., 99, 1015-1034.
    • (2008) J. Multiv. Anal. , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.2
  • 61
    • 84881597900 scopus 로고    scopus 로고
    • Diffusion Indexes. Working Paper 6702. National Bureau of Economic Research, Cambridge.
    • Stock, J. and Watson, M. (1998) Diffusion Indexes. Working Paper 6702. National Bureau of Economic Research, Cambridge.
    • (1998)
    • Stock, J.1    Watson, M.2
  • 62
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J. and Watson, M. (2002) Forecasting using principal components from a large number of predictors. J. Am. Statist. Ass., 97, 1167-1179.
    • (2002) J. Am. Statist. Ass. , vol.97 , pp. 1167-1179
    • Stock, J.1    Watson, M.2
  • 63
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten, D. M., Tibshirani, R. and Hastie, T. (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics, 10, 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 64
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization
    • Wright, J., Peng, Y., Ma, Y., Ganesh, A. and Rao, S. (2009) Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. New. Inform. Process. Syst.
    • (2009) New. Inform. Process. Syst
    • Wright, J.1    Peng, Y.2    Ma, Y.3    Ganesh, A.4    Rao, S.5
  • 65
    • 80052648285 scopus 로고    scopus 로고
    • A flexible estimating equations approach for mapping function-valued traits
    • Xiong, H., Goulding, E. H., Carlson, E. J., Tecott, L. H., McCulloch, C. E. and Sen, S. (2011) A flexible estimating equations approach for mapping function-valued traits. Genetics, 189, 305-316.
    • (2011) Genetics , vol.189 , pp. 305-316
    • Xiong, H.1    Goulding, E.H.2    Carlson, E.J.3    Tecott, L.H.4    McCulloch, C.E.5    Sen, S.6
  • 66
    • 70450278707 scopus 로고    scopus 로고
    • Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci
    • Yap, J. S., Fan, J. and Wu, R. (2009) Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci. Biometrics, 65, 1068-1077.
    • (2009) Biometrics , vol.65 , pp. 1068-1077
    • Yap, J.S.1    Fan, J.2    Wu, R.3
  • 67
    • 85162556142 scopus 로고    scopus 로고
    • Large-scale sparse principal component analysis with application to text data
    • Zhang, Y. and El Ghaoui, L. (2011) Large-scale sparse principal component analysis with application to text data. New. Inform. Process. Syst.
    • (2011) New. Inform. Process. Syst
    • Zhang, Y.1    El Ghaoui, L.2
  • 68
    • 84881580787 scopus 로고    scopus 로고
    • Model-free estimation of large variance matrices. Working Paper 10-17. Rimini Centre For Economic Analysis, Rimini.
    • Abadir, K. M., Distaso, W. and Zikes, F. (2010) Model-free estimation of large variance matrices. Working Paper 10-17. Rimini Centre For Economic Analysis, Rimini.
    • (2010)
    • Abadir, K.M.1    Distaso, W.2    Zikes, F.3
  • 69
    • 84872015802 scopus 로고    scopus 로고
    • Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions
    • Agarwal, A., Negahban, S. and Wainwright, M. J. (2012) Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions. Ann. Statist., 40, 1171-1197.
    • (2012) Ann. Statist. , vol.40 , pp. 1171-1197
    • Agarwal, A.1    Negahban, S.2    Wainwright, M.J.3
  • 70
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natn. Acad. Sci. USA, 96, 6745-6750.
    • (1999) Proc. Natn. Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 71
    • 69049101180 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • Amini, A. A. and Wainwright, M. J. (2009) High-dimensional analysis of semidefinite relaxations for sparse principal components. Ann. Statist., 37, 2877-2921.
    • (2009) Ann. Statist. , vol.37 , pp. 2877-2921
    • Amini, A.A.1    Wainwright, M.J.2
  • 72
    • 84857394773 scopus 로고    scopus 로고
    • Wavelet methods in statistics: some recent developments and their application
    • Antoniadis, A. (2007) Wavelet methods in statistics: some recent developments and their application. Statist. Surv., 1, 16-55.
    • (2007) Statist. Surv. , vol.1 , pp. 16-55
    • Antoniadis, A.1
  • 73
    • 84871198733 scopus 로고    scopus 로고
    • Statistical analysis of factor models of high dimension
    • Bai, J. and Li, K. (2012) Statistical analysis of factor models of high dimension. Ann. Statist., 40, 436-465.
    • (2012) Ann. Statist. , vol.40 , pp. 436-465
    • Bai, J.1    Li, K.2
  • 74
    • 0036221554 scopus 로고    scopus 로고
    • Determining the number of factors in approximate factor models
    • Bai, J. and Ng, S. (2002) Determining the number of factors in approximate factor models. Econometrica, 70, 191-221.
    • (2002) Econometrica , vol.70 , pp. 191-221
    • Bai, J.1    Ng, S.2
  • 75
    • 63849341672 scopus 로고    scopus 로고
    • Central limit theorems for eigenvalues in a spiked population model
    • Bai, Z. D. and Yao, J. F. (2008) Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. H. Poincaré, 44, 447-474.
    • (2008) Ann. Inst. H. Poincaré , vol.44 , pp. 447-474
    • Bai, Z.D.1    Yao, J.F.2
  • 76
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • Baik, J. and Silverstein, J. W. (2006) Eigenvalues of large sample covariance matrices of spiked population models. J. Multiv. Anal., 97, 1382-1408.
    • (2006) J. Multiv. Anal. , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 77
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel, P. and Levina, E. (2008) Covariance regularization by thresholding. Ann. Statist., 36, 2577-2604.
    • (2008) Ann. Statist. , vol.36 , pp. 2577-2604
    • Bickel, P.1    Levina, E.2
  • 78
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • Bickel, P. J., Ritov, Y. and Tsybakov, A. B. (2009) Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist., 37, 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.J.1    Ritov, Y.2    Tsybakov, A.B.3
  • 79
    • 80054752218 scopus 로고    scopus 로고
    • Structural shrinkage of nonparametric spectral estimators for multivariate time series
    • Boehm, H. and von Sachs, R. (2008) Structural shrinkage of nonparametric spectral estimators for multivariate time series. Electron. J. Statist., 2, 696-721.
    • (2008) Electron. J. Statist. , vol.2 , pp. 696-721
    • Boehm, H.1    von Sachs, R.2
  • 80
    • 60549098786 scopus 로고    scopus 로고
    • Shrinkage estimation in the frequency domain of multivariate time series
    • Boehm, H. and von Sachs, R. (2009) Shrinkage estimation in the frequency domain of multivariate time series. J. Multiv. Anal., 100, 913-935.
    • (2009) J. Multiv. Anal. , vol.100 , pp. 913-935
    • Boehm, H.1    von Sachs, R.2
  • 82
    • 84881606325 scopus 로고    scopus 로고
    • Alternating projections. Available from
    • Boyd, S. and Dattorro, J. (2003) Alternating projections. (Available from http://www.stanford.edu/class/ee392o/alt_proj.pdf.)
    • (2003)
    • Boyd, S.1    Dattorro, J.2
  • 85
    • 0032375671 scopus 로고    scopus 로고
    • Nearest-neighbor clutter removal for estimating features in spatial point processes
    • Byers, S. and Raftery, A. E. (1998) Nearest-neighbor clutter removal for estimating features in spatial point processes. J. Am. Statist. Ass., 93, 577-584.
    • (1998) J. Am. Statist. Ass. , vol.93 , pp. 577-584
    • Byers, S.1    Raftery, A.E.2
  • 86
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • Cai, T. and Liu, W. (2011) Adaptive thresholding for sparse covariance matrix estimation. J. Am. Statist. Ass., 106, 672-684.
    • (2011) J. Am. Statist. Ass. , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 87
    • 62549125109 scopus 로고    scopus 로고
    • High-dimensional sparse factor modeling: applications in gene expression genomics
    • Carvalho, C., Chang, J., Lucas, J., Nevins, J., Wang, Q. and West, M. (2008) High-dimensional sparse factor modeling: applications in gene expression genomics. J. Am. Statist. Ass., 103, 1438-1456.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 1438-1456
    • Carvalho, C.1    Chang, J.2    Lucas, J.3    Nevins, J.4    Wang, Q.5    West, M.6
  • 88
    • 0000915180 scopus 로고
    • Arbitrage, factor structure and mean-variance analysis in large asset markets
    • Chamberlain, G. and Rothschild, M. (1983) Arbitrage, factor structure and mean-variance analysis in large asset markets. Econometrica, 51, 1305-1324.
    • (1983) Econometrica , vol.51 , pp. 1305-1324
    • Chamberlain, G.1    Rothschild, M.2
  • 89
    • 84873377152 scopus 로고    scopus 로고
    • Convergence of the largest eigenvalue of normalized sample covariance matrices when p and n both tend to infinity with their ratio converging to zero
    • Chen, B. B. and Pan, G. M. (2012) Convergence of the largest eigenvalue of normalized sample covariance matrices when p and n both tend to infinity with their ratio converging to zero. Bernoulli, 18, 1405-1420.
    • (2012) Bernoulli , vol.18 , pp. 1405-1420
    • Chen, B.B.1    Pan, G.M.2
  • 90
    • 79951685846 scopus 로고    scopus 로고
    • Weak and strong cross-section dependence and estimation of large panels
    • Chudik, A., Pesaran, M. H. and Tosetti, E. (2011) Weak and strong cross-section dependence and estimation of large panels. Econmetr. J., 14, 45-90.
    • (2011) Econmetr. J. , vol.14 , pp. 45-90
    • Chudik, A.1    Pesaran, M.H.2    Tosetti, E.3
  • 91
    • 0004602894 scopus 로고    scopus 로고
    • Analysis of spatial point patterns using bundles product LISA function
    • Collins, L. B. and Cressie, N. (2001) Analysis of spatial point patterns using bundles product LISA function. J. Agric. Biol. Environ. Statist., 6, 118-135.
    • (2001) J. Agric. Biol. Environ. Statist. , vol.6 , pp. 118-135
    • Collins, L.B.1    Cressie, N.2
  • 92
    • 84881570181 scopus 로고    scopus 로고
    • GNU Octave Manual. Bristol: Network Theory Limited.
    • Eaton, J. W. (2002) GNU Octave Manual. Bristol: Network Theory Limited.
    • (2002)
    • Eaton, J.W.1
  • 93
    • 33747331979 scopus 로고    scopus 로고
    • A comparison of three procedures for Robust PCA in high dimensions
    • Engelen, S., Hubert, M. and Vanden Branden, K. (2005) A comparison of three procedures for Robust PCA in high dimensions. Austn J. Statist., 34, 117-126.
    • (2005) Austn J. Statist. , vol.34 , pp. 117-126
    • Engelen, S.1    Hubert, M.2    Vanden Branden, K.3
  • 94
    • 38549147867 scopus 로고
    • Common risk factors in the returns on stocks and bonds
    • Fama, E. and French, K. R. (1993) Common risk factors in the returns on stocks and bonds. J. Finan. Econ., 33, 3-56.
    • (1993) J. Finan. Econ. , vol.33 , pp. 3-56
    • Fama, E.1    French, K.R.2
  • 95
    • 55349144848 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation using a factor model
    • Fan, J., Fan, Y. and Lv, J. (2008) High dimensional covariance matrix estimation using a factor model. J. Econmetr., 147, 186-197.
    • (2008) J. Econmetr. , vol.147 , pp. 186-197
    • Fan, J.1    Fan, Y.2    Lv, J.3
  • 96
    • 84881608863 scopus 로고    scopus 로고
    • Estimation of false discovery proportion with unknown dependence. Manuscript.
    • Fan, J. and Han, X. (2013) Estimation of false discovery proportion with unknown dependence. Manuscript.
    • (2013)
    • Fan, J.1    Han, X.2
  • 97
    • 84906280924 scopus 로고    scopus 로고
    • High dimensional covariance matrix estimation in approximate factor models
    • Fan, J., Liao, Y. and Mincheva, M. (2011) High dimensional covariance matrix estimation in approximate factor models. Ann. Statist., 39, 3320-3356.
    • (2011) Ann. Statist. , vol.39 , pp. 3320-3356
    • Fan, J.1    Liao, Y.2    Mincheva, M.3
  • 98
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh dimensional feature space (with discussion)
    • Fan, J. and Lv, J. (2008) Sure independence screening for ultrahigh dimensional feature space (with discussion). J. R. Statist. Soc. B, 70, 849-911.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 849-911
    • Fan, J.1    Lv, J.2
  • 99
    • 84864394076 scopus 로고    scopus 로고
    • Vast portfolio selection with gross-exposure constraints
    • Fan, J., Zhang, J. and Yu, K. (2012) Vast portfolio selection with gross-exposure constraints. J. Am. Statist. Ass., 107, 592-606.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 592-606
    • Fan, J.1    Zhang, J.2    Yu, K.3
  • 100
    • 84881563716 scopus 로고    scopus 로고
    • Different estimators of the spectral matrix: an empirical comparison; testing a new shrinkage estimator
    • to be published.
    • Farnè, M. and Montanari, A. (2013) Different estimators of the spectral matrix: an empirical comparison; testing a new shrinkage estimator. Communs Statist. Theor. Meth., to be published.
    • (2013) Communs Statist. Theor. Meth.
    • Farnè, M.1    Montanari, A.2
  • 101
    • 0034364595 scopus 로고    scopus 로고
    • The generalized dynamic factor model: identification and estimation
    • Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2000) The generalized dynamic factor model: identification and estimation. Rev. Econ. Statist., 82, 540-554.
    • (2000) Rev. Econ. Statist. , vol.82 , pp. 540-554
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 102
    • 1642324121 scopus 로고    scopus 로고
    • The generalized dynamic factor model consistency and rates
    • Forni, M., Hallin, M., Lippi, M. and Reichlin, L. (2004) The generalized dynamic factor model consistency and rates. J. Econmetr., 119, 231-255.
    • (2004) J. Econmetr. , vol.119 , pp. 231-255
    • Forni, M.1    Hallin, M.2    Lippi, M.3    Reichlin, L.4
  • 103
    • 0035634831 scopus 로고    scopus 로고
    • The generalized dynamic factor model: representation theory
    • Forni M. and Lippi, M. (2001) The generalized dynamic factor model: representation theory. Econmetr. Theor., 17, 1113-1341.
    • (2001) Econmetr. Theor. , vol.17 , pp. 1113-1341
    • Forni, M.1    Lippi, M.2
  • 105
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension, low sample size data
    • Hall, P., Marron, J. S. and Neeman, A. (2005) Geometric representation of high dimension, low sample size data. J. R. Statist. Soc. B, 67, 427-444.
    • (2005) J. R. Statist. Soc. B , vol.67 , pp. 427-444
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 106
    • 84881590430 scopus 로고    scopus 로고
    • Statistical significance of clustering using soft thresholding. Preprint arXiv:1305.5879.
    • Huang, H., Liu, Y., Yuan, M. and Marron, J. S. (2013) Statistical significance of clustering using soft thresholding. Preprint arXiv:1305.5879.
    • (2013)
    • Huang, H.1    Liu, Y.2    Yuan, M.3    Marron, J.S.4
  • 107
    • 0142188090 scopus 로고    scopus 로고
    • Risk reduction in large portfolios: why imposing the wrong constraints helps
    • Jagannathan, R. and Ma, T. (2003) Risk reduction in large portfolios: why imposing the wrong constraints helps. J. Finan., 58, 1651-1683.
    • (2003) J. Finan. , vol.58 , pp. 1651-1683
    • Jagannathan, R.1    Ma, T.2
  • 108
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone, I. M. and Lu, A. Y. (2009) On consistency and sparsity for principal components analysis in high dimensions. J. Am. Statist. Ass., 104, 682-693.
    • (2009) J. Am. Statist. Ass. , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 110
    • 70249103304 scopus 로고    scopus 로고
    • PCA consistency in high dimension, low sample size context
    • no. 6B
    • Jung, S. and Marron, J. S. (2009) PCA consistency in high dimension, low sample size context. Ann. Statist., 37, no. 6B, 4104-4130.
    • (2009) Ann. Statist. , vol.37 , pp. 4104-4130
    • Jung, S.1    Marron, J.S.2
  • 111
    • 84860446130 scopus 로고    scopus 로고
    • Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA
    • Jung, S., Sen A. and Marron, J. (2012) Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA. J. Multiv. Anal., 109, 196-203.
    • (2012) J. Multiv. Anal. , vol.109 , pp. 196-203
    • Jung, S.1    Sen, A.2    Marron, J.3
  • 112
    • 84858704112 scopus 로고    scopus 로고
    • Efficient emulators of computer experiments using compactly supported correlation functions with an application to cosmology
    • Kaufman, C. G., Bingham, D., Habib, S., Heitmann, K. and Frieman, J. A. (2011) Efficient emulators of computer experiments using compactly supported correlation functions with an application to cosmology. Ann. Appl. Statist., 5, 2470-2492.
    • (2011) Ann. Appl. Statist. , vol.5 , pp. 2470-2492
    • Kaufman, C.G.1    Bingham, D.2    Habib, S.3    Heitmann, K.4    Frieman, J.A.5
  • 113
    • 70049091991 scopus 로고    scopus 로고
    • Covariance tapering for likelihood-based estimation in large spatial data sets
    • Kaufman, C. G., Schervish, M. J. and Nychka, D. W. (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. J. Am. Statist. Ass., 103, 1545-1555.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 1545-1555
    • Kaufman, C.G.1    Schervish, M.J.2    Nychka, D.W.3
  • 114
    • 84881599030 scopus 로고    scopus 로고
    • Covariance assisted screening and estimation. Preprint arXiv:1205.4645v2.
    • Ke, T., Jin, J. and Fan, J. (2012) Covariance assisted screening and estimation. Preprint arXiv:1205.4645v2.
    • (2012)
    • Ke, T.1    Jin, J.2    Fan, J.3
  • 115
    • 84864098146 scopus 로고    scopus 로고
    • Parameter uncertainty in portfolio selection: shrinking the inverse covariance matrix
    • Kourtis, A., Dotsis, G. and Markellos, R. (2012) Parameter uncertainty in portfolio selection: shrinking the inverse covariance matrix. J. Bankng Finan., 36, 2522-2531.
    • (2012) J. Bankng Finan. , vol.36 , pp. 2522-2531
    • Kourtis, A.1    Dotsis, G.2    Markellos, R.3
  • 116
    • 84872040116 scopus 로고    scopus 로고
    • Factor modeling for high-dimensional time series: inference for the number of factors
    • Lam, C. and Yao, Q. (2012) Factor modeling for high-dimensional time series: inference for the number of factors. Ann. Statist., 40, 694-726.
    • (2012) Ann. Statist. , vol.40 , pp. 694-726
    • Lam, C.1    Yao, Q.2
  • 117
    • 82255192891 scopus 로고    scopus 로고
    • Estimation of latent factors for high-dimensional time series
    • Lam, C., Yao, Q. and Bathia, K. (2011) Estimation of latent factors for high-dimensional time series. Biometrika, 98, 901-918.
    • (2011) Biometrika , vol.98 , pp. 901-918
    • Lam, C.1    Yao, Q.2    Bathia, K.3
  • 118
    • 59849117631 scopus 로고    scopus 로고
    • Principal components analysis of nonstationary time series data
    • Lansangan, J. R. G. and Barrios, E. B. (2009) Principal components analysis of nonstationary time series data. Statist. Comput., 19, 173-187.
    • (2009) Statist. Comput. , vol.19 , pp. 173-187
    • Lansangan, J.R.G.1    Barrios, E.B.2
  • 120
    • 0041841552 scopus 로고    scopus 로고
    • Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
    • Ledoit, O. and Wolf, M. (2003) Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Finan., 10, 603-621.
    • (2003) J. Empir. Finan. , vol.10 , pp. 603-621
    • Ledoit, O.1    Wolf, M.2
  • 121
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • Ledoit, O. and Wolf, M. (2004) A well-conditioned estimator for large-dimensional covariance matrices. J. Multiv. Anal., 88, 365-411.
    • (2004) J. Multiv. Anal. , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 122
    • 84875151494 scopus 로고    scopus 로고
    • High dimensional semiparametric gaussian copula graphical models
    • Liu, H., Han, F., Yuan, M., Lafferty, J. and Wasserman, L. (2012) High dimensional semiparametric gaussian copula graphical models. Ann. Statist., 40, 2293-2326.
    • (2012) Ann. Statist. , vol.40 , pp. 2293-2326
    • Liu, H.1    Han, F.2    Yuan, M.3    Lafferty, J.4    Wasserman, L.5
  • 123
    • 54949118365 scopus 로고    scopus 로고
    • Statistical significance of clustering for high-dimension, low-sample size data
    • Liu, Y., Hayes, D. N., Nobel, A. and Marron, J. S. (2008) Statistical significance of clustering for high-dimension, low-sample size data. J. Am. Statist. Ass., 103, 1281-1293.
    • (2008) J. Am. Statist. Ass. , vol.103 , pp. 1281-1293
    • Liu, Y.1    Hayes, D.N.2    Nobel, A.3    Marron, J.S.4
  • 124
    • 84881587509 scopus 로고    scopus 로고
    • Tiger: a tuning-insensitive approach for optimally estimating gaussian graphical models. Princeton University, Princeton. Available from
    • Liu, H. and Wang, L. (2012) Tiger: a tuning-insensitive approach for optimally estimating gaussian graphical models. Princeton University, Princeton. (Available from http://arxiv.org/abs/1209.2437.)
    • (2012)
    • Liu, H.1    Wang, L.2
  • 125
    • 84995186518 scopus 로고
    • Portfolio selection
    • Markowitz, H. (1952) Portfolio selection. J. Finan., 7, 77-91.
    • (1952) J. Finan. , vol.7 , pp. 77-91
    • Markowitz, H.1
  • 126
    • 70349835782 scopus 로고    scopus 로고
    • Testing hypotheses about the number of factors in large factor models
    • Onatski, A. (2009) Testing hypotheses about the number of factors in large factor models. Econometrica, 77, 1447-1479.
    • (2009) Econometrica , vol.77 , pp. 1447-1479
    • Onatski, A.1
  • 127
    • 78650967353 scopus 로고    scopus 로고
    • Determining the number of factors from empirical distribution of eigenvalues
    • Onatski, A. (2010) Determining the number of factors from empirical distribution of eigenvalues. Rev. Econ. Statist., 92, 1004-1016.
    • (2010) Rev. Econ. Statist. , vol.92 , pp. 1004-1016
    • Onatski, A.1
  • 128
    • 84881570459 scopus 로고    scopus 로고
    • Posterior contraction in sparse Bayesian factor models for massive covariance matrices. Manuscript. Duke University, Durham.
    • Pati, D., Bhattacharaya, A., Pillai, N. and Dunson, D. (2012) Posterior contraction in sparse Bayesian factor models for massive covariance matrices. Manuscript. Duke University, Durham.
    • (2012)
    • Pati, D.1    Bhattacharaya, A.2    Pillai, N.3    Dunson, D.4
  • 129
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • Paul, D. (2007) Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sin., 17, 1617-1642.
    • (2007) Statist. Sin. , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 130
    • 84881584629 scopus 로고    scopus 로고
    • Testing CAPM with a large number of assets. American Finance Association San Diego Meetings Paper. Available from
    • Pesaran, M. H. and Yamagata, T. (2012) Testing CAPM with a large number of assets. American Finance Association San Diego Meetings Paper. (Available from http://ssrn.com/abstracts.)
    • (2012)
    • Pesaran, M.H.1    Yamagata, T.2
  • 132
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • article 32.
    • Schaefer, J. and Strimmer, K. (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statist. Applic. Genet. Molec. Biol., 4, article 32.
    • (2005) Statist. Applic. Genet. Molec. Biol. , vol.4
    • Schaefer, J.1    Strimmer, K.2
  • 133
    • 84908648329 scopus 로고    scopus 로고
    • A general framework for consistency of principal component analysis
    • Shen, D., Shen, H. and Marron, J. (2012) A general framework for consistency of principal component analysis. Preprint arXiv:1211.2671.
    • (2012) Preprint arXiv:1211.2671
    • Shen, D.1    Shen, H.2    Marron, J.3
  • 134
    • 84869784137 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • Shen, D., Shen, H. and Marron, J. S. (2013) Consistency of sparse PCA in high dimension, low sample size contexts. J. Multiv. Anal., 115, 317-333.
    • (2013) J. Multiv. Anal. , vol.115 , pp. 317-333
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 135
    • 0036005160 scopus 로고    scopus 로고
    • Macroeconomic forecasting using diffusion indexes
    • Stock, J. H. and Watson, M. W. (2002a) Macroeconomic forecasting using diffusion indexes. J. Bus. Econ. Statist., 20, 147-162.
    • (2002) J. Bus. Econ. Statist. , vol.20 , pp. 147-162
    • Stock, J.H.1    Watson, M.W.2
  • 136
    • 0036970448 scopus 로고    scopus 로고
    • Forecasting using principal components from a large number of predictors
    • Stock, J. H. and Watson, M. W. (2002b) Forecasting using principal components from a large number of predictors. J. Am. Statist. Ass., 97, 1167-1179.
    • (2002) J. Am. Statist. Ass. , vol.97 , pp. 1167-1179
    • Stock, J.H.1    Watson, M.W.2
  • 137
    • 84881579505 scopus 로고    scopus 로고
    • Implications of dynamic factor models for VAR analysis. Working Paper 11467. National Bureau of Economic Research, Cambridge.
    • Stock, J. H. and Watson, M. W. (2005) Implications of dynamic factor models for VAR analysis. Working Paper 11467. National Bureau of Economic Research, Cambridge.
    • (2005)
    • Stock, J.H.1    Watson, M.W.2
  • 138
    • 84881591813 scopus 로고    scopus 로고
    • Precision matrix estimation by inverse principle orthogonal decomposition. Manuscript.
    • Tang, C. Y. and Fan, Y. (2013) Precision matrix estimation by inverse principle orthogonal decomposition. Manuscript.
    • (2013)
    • Tang, C.Y.1    Fan, Y.2
  • 140
    • 84863252835 scopus 로고    scopus 로고
    • Factor profiled sure independence screening
    • Wang, H. (2012) Factor profiled sure independence screening. Biometrika, 99, 15-28.
    • (2012) Biometrika , vol.99 , pp. 15-28
    • Wang, H.1
  • 142
    • 84871968656 scopus 로고    scopus 로고
    • Positive definite l1 penalized estimation of large covariance matrices
    • Xue, L., Ma, S. and Zou, H. (2012) Positive definite l1 penalized estimation of large covariance matrices. J. Am. Statist. Ass., 107, 1480-1491.
    • (2012) J. Am. Statist. Ass. , vol.107 , pp. 1480-1491
    • Xue, L.1    Ma, S.2    Zou, H.3
  • 143
    • 84881580168 scopus 로고    scopus 로고
    • Sparse weighted norm minimum variance portfolio. Preprint.
    • Yen, Y. M. (2011) Sparse weighted norm minimum variance portfolio. Preprint.
    • (2011)
    • Yen, Y.M.1
  • 144
    • 27544506863 scopus 로고    scopus 로고
    • Two-stage designs for experiments with a large number of hypotheses
    • Zehetmayer, S., Bauer, P. and Posch, M. (2005) Two-stage designs for experiments with a large number of hypotheses. Bioinformatics, 21, 3771-3777.
    • (2005) Bioinformatics , vol.21 , pp. 3771-3777
    • Zehetmayer, S.1    Bauer, P.2    Posch, M.3
  • 145
    • 50849104265 scopus 로고    scopus 로고
    • Optimized multi-stage designs controlling the false discovery or the family-wise error rate
    • Zehetmayer, S., Bauer, P. and Posch, M. (2008) Optimized multi-stage designs controlling the false discovery or the family-wise error rate. Statist. Med., 27, 4145-4160.
    • (2008) Statist. Med. , vol.27 , pp. 4145-4160
    • Zehetmayer, S.1    Bauer, P.2    Posch, M.3
  • 146
    • 84881602059 scopus 로고    scopus 로고
    • Technical Report. School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury.
    • Zhang, J. (2012) Source screening for neuroimaging. Technical Report. School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury.
    • (2012) Source screening for neuroimaging
    • Zhang, J.1
  • 147
    • 84881570322 scopus 로고    scopus 로고
    • Technical Report. School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury.
    • Zhang, J., Liu, C. and Green, G. (2012) Source localization with MEG data. Technical Report. School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury.
    • (2012) Source localization with MEG data
    • Zhang, J.1    Liu, C.2    Green, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.