-
1
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science, 313 (5786) (2006), 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
2
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition-The shared views of four research groups
-
Hinton, G.E. et al.: Deep neural networks for acoustic modeling in speech recognition-The shared views of four research groups. IEEE Signal Process. Mag., 29 (6) (2012), 82-97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.E.1
-
3
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
NIPS
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems, vol. 25, NIPS, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
4
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn., 2 (1) (2009), 1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
5
-
-
84905712727
-
Deep learning: Methods and applications
-
Deng, L., Yu, D.: Deep learning: Methods and applications. Found. Trends Signal Process., 7 (2014), 3-4.
-
(2014)
Found. Trends Signal Process.
, vol.7
, pp. 3-4
-
-
Deng, L.1
Yu, D.2
-
6
-
-
35348818718
-
Learningmultiple layers of representation
-
Hinton, G.E.: Learningmultiple layers of representation. TrendsCognit. Sci., 11 (2007), 428-434.
-
(2007)
TrendsCognit. Sci.
, vol.11
, pp. 428-434
-
-
Hinton, G.E.1
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput., 18 (2006), 1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
8
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G.E.:Deep learning.Nature, 521 (2015), 436-444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.E.3
-
9
-
-
0003922190
-
-
Wiley, New York
-
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd ed., Wiley, New York, 2001, ISBN: 978-0-471-05669-0.
-
(2001)
Pattern Classification, 2nd Ed.
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
10
-
-
34249753618
-
Support-vector networks
-
Cortes, C., Vapnik, V.: Support-vector networks.Mach. Learn., 20 (3) (1995), 273.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273
-
-
Cortes, C.1
Vapnik, V.2
-
11
-
-
0026982122
-
Discriminative learning for minimum error classification
-
Juang, B.H., Katagiri, S.: Discriminative learning for minimum error classification. IEEE Trans. Signal Process., 40 (12) (1992), 3043-3054.
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.12
, pp. 3043-3054
-
-
Juang, B.H.1
Katagiri, S.2
-
13
-
-
0003928439
-
-
MIT Press, Cambridge, Massachusetts
-
Koch, C., Segev, I.: Methods in Neuronal Modeling: From Ions to Networks, 2nd ed., MIT Press, Cambridge, Massachusetts, 1999.
-
(1999)
Methods in Neuronal Modeling: From Ions to Networks, 2nd Ed.
-
-
Koch, C.1
Segev, I.2
-
14
-
-
51249194645
-
A logical calculus of ideas immanent in nervous activity
-
McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bull. Math. Biophys., 5 (4) (1943), 115-133.
-
(1943)
Bull. Math. Biophys.
, vol.5
, Issue.4
, pp. 115-133
-
-
McCulloch, W.1
Pitts, W.2
-
17
-
-
0020118274
-
Neural networks and physical systems with emergent collective computational abilities
-
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 79 (1982), 2554-2558.
-
(1982)
Proc. Natl. Acad. Sci. USA
, vol.79
, pp. 2554-2558
-
-
Hopfield, J.J.1
-
18
-
-
0023521375
-
Adaptive associative, and self-organizing functions in neural computing
-
Kohonen, T.: Adaptive, associative, and self-organizing functions in neural computing. Appl. Opt., 26 (23) (1987), 4910-4918.
-
(1987)
Appl. Opt.
, vol.26
, Issue.23
, pp. 4910-4918
-
-
Kohonen, T.1
-
19
-
-
11144273669
-
The perceptron: A probabilistic model for information storage and organization in the brain
-
Also, The Perceptron-a perceiving and recognizing automaton, Report 85-460-1, Cornell Aeronautical Laboratory 1957
-
Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 65 (6) (1958), 386. Also, The Perceptron-a perceiving and recognizing automaton, Report 85-460-1, Cornell Aeronautical Laboratory, 1957.
-
(1958)
Psychol. Rev.
, vol.65
, Issue.6
, pp. 386
-
-
Rosenblatt, F.1
-
20
-
-
84965026234
-
-
IRE, New York
-
Widrow, B., Hoff, Jr., M.E.: Adaptive Switching Circuits. IRE WESCOM Convention Record, Part.4, IRE, New York, 1960, 96-104.
-
(1960)
Adaptive Switching Circuits. IRE WESCOM Convention Record, Part.4
, pp. 96-104
-
-
Widrow, B.1
Hoff, M.E.2
-
21
-
-
0023383370
-
The capacity of theHopfield associativememory
-
McEliece, R.J., Posner, E.C., Rodemich, E.R., Venkatesh, S.S.: The capacity of theHopfield associativememory. IEEE Trans. Inf. Theory, 33 (4) (1987), 461-482.
-
(1987)
IEEE Trans. Inf. Theory
, vol.33
, Issue.4
, pp. 461-482
-
-
McEliece, R.J.1
Posner, E.C.2
Rodemich, E.R.3
Venkatesh, S.S.4
-
22
-
-
0025503486
-
On the convergence properties of the Hopfieldmodel
-
Bruck, J.:On the convergence properties of theHopfieldmodel. Proc. IEEE, 78 (10) (1990), 1579-1585.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1579-1585
-
-
Bruck, J.1
-
23
-
-
0001578518
-
A learning algorithm for Boltzmann machines
-
Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for Boltzmann machines. Cognit. Sci., 9 (1) (1985), 147-169.
-
(1985)
Cognit. Sci.
, vol.9
, Issue.1
, pp. 147-169
-
-
Ackley, D.1
Hinton, G.2
Sejnowski, T.3
-
24
-
-
0000329993
-
Chapter 6: Information processing in dynamical systems: Foundations of harmony theory
-
D. Rumelhart; J. McLelland (ed.) MIT Press, Cambridge, MA
-
Smolensky, P.: Chapter 6: Information processing in dynamical systems: Foundations of harmony theory, in ParallelDistributed Processing: Explorations in theMicrostructure of Cognition, vol. 1: Foundations. D. Rumelhart; J. McLelland (ed.), MIT Press, Cambridge, MA, 1986, 194-281.
-
(1986)
ParallelDistributed Processing: Explorations in TheMicrostructure of Cognition : Foundations
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
-
25
-
-
84992827630
-
A sociological study of the official history of the perceptrons controversy
-
Olazaran, M.: A sociological study of the official history of the perceptrons controversy. Soc. Stud. Sci., 26 (3) (1996), 611-659.
-
(1996)
Soc. Stud. Sci.
, vol.26
, Issue.3
, pp. 611-659
-
-
Olazaran, M.1
-
27
-
-
0025503558
-
Backpropagation through time: What it does and how to do it
-
Werbos, P.: Backpropagation through time: What it does and how to do it. Proc. IEEE, 78 (10) (1990), 1550-1560.
-
(1990)
Proc. IEEE
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.1
-
28
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi, K-I.: On the approximate realization of continuous mappings by neural networks. Neural Netw., 2 (3) (1989), 183-192.
-
(1989)
Neural Netw.
, vol.2
, Issue.3
, pp. 183-192
-
-
Funahashi, K.-I.1
-
29
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw., 2 (5) (1989), 359-366.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
30
-
-
0026982122
-
Discriminative learning for minimum error classification pattern recognition
-
Juang, B.H., Katagiri, S.: Discriminative learning for minimum error classification pattern recognition. IEEE Trans. Signal Process., 40 (12) (1992), 3043-3054.
-
(1992)
IEEE Trans. Signal Process.
, vol.40
, Issue.12
, pp. 3043-3054
-
-
Juang, B.H.1
Katagiri, S.2
-
31
-
-
0023861743
-
Bidirectional associativememories
-
Kosko, B., Bidirectional associativememories. IEEE Trans. Syst.Man Cybern. 18 (1) (1988), 49-60.
-
(1988)
IEEE Trans. Syst.Man Cybern
, vol.18
, Issue.1
, pp. 49-60
-
-
Kosko, B.1
-
32
-
-
0001327717
-
Learning and extracting finite state automata with secondorder recurrent neural networks
-
Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., Lee, Y.C.: Learning and extracting finite state automata with secondorder recurrent neural networks. Neural Comput., 4 (3) (1992), 393.
-
(1992)
Neural Comput.
, vol.4
, Issue.3
, pp. 393
-
-
Giles, C.L.1
Miller, C.B.2
Chen, D.3
Chen, H.H.4
Sun, G.Z.5
Lee, Y.C.6
-
34
-
-
0000658710
-
Markov random fields and Gibbs ensembles
-
JSTOR 2317621
-
Frank Spitzer: Markov random fields and Gibbs ensembles. Am. Math. Mont., 78 (2) (1971), 142-154. doi: 10.2307/2317621, JSTOR 2317621.
-
(1971)
Am. Math. Mont.
, vol.78
, Issue.2
, pp. 142-154
-
-
Spitzer, F.1
-
35
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Williams College, Williamstown, MA
-
Lafferty, J.D., Mccallum, A.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data, in Proc. Int. Conf. on Machine Learning (ICML), Williams College, Williamstown, MA, 2001.
-
(2001)
Proc. Int. Conf. on Machine Learning (ICML)
-
-
Lafferty, J.D.1
McCallum, A.2
-
36
-
-
4043129651
-
Graphical models
-
Jordan, M.I.: Graphical models. Stat. Sci., 19 (1) (2004), 140-155.
-
(2004)
Stat. Sci.
, vol.19
, Issue.1
, pp. 140-155
-
-
Jordan, M.I.1
-
37
-
-
77952603871
-
-
CRC Press, Boca Raton, FL
-
Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications, CRC Press, Boca Raton, FL, 2005.
-
(2005)
Gaussian Markov Random Fields: Theory and Applications
-
-
Rue, H.1
Held, L.2
-
38
-
-
85043850861
-
-
TECHNICAL REPORT NO. 1170, Department of Statistics, University ofWisconsin, June 6
-
Dai, B., Ding, S., Wahba, G.: Multivariate Bernoulli Distribution, TECHNICAL REPORT NO. 1170, Department of Statistics, University ofWisconsin, June 6, 2012.
-
(2012)
Multivariate Bernoulli Distribution
-
-
Dai, B.1
Ding, S.2
Wahba, G.3
-
39
-
-
85057940597
-
-
Master'sthesis Aalto University
-
Cho, K.H., Raiko, T., Ilin, A.: Improved learning of Gaussian-Bernoulli restricted Boltzmann machines, Master's thesis, Aalto University, 2011.
-
(2011)
Improved Learning of Gaussian-Bernoulli Restricted Boltzmann Machines
-
-
Cho, K.H.1
Raiko, T.2
Ilin, A.3
-
40
-
-
0013344078
-
Training products of experts byminimizing contrastive divergence
-
Hinton, G.E.: Training products of experts byminimizing contrastive divergence. Neural Comput., 14 (2002), 1771-1800.
-
(2002)
Neural Comput.
, vol.14
, pp. 1771-1800
-
-
Hinton, G.E.1
-
41
-
-
84862612564
-
On contrastive divergence learning
-
Jan
-
Carreira-Perpinan, M.A., Hinton, G.E.: On contrastive divergence learning, in Proc. AISTATS 2005, 10th Inter. Workshop on Artificial Intelligence and Statistics, Barbados, Jan. 2005.
-
(2005)
Proc. AISTATS 2005, 10th Inter. Workshop on Artificial Intelligence and Statistics, Barbados
-
-
Carreira-Perpinan, M.A.1
Hinton, G.E.2
-
45
-
-
0024220237
-
Auto-association by multilayer perceptrons and singular value decomposition
-
Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern., 59 (4-5) (1988), 291-294.
-
(1988)
Biol. Cybern.
, vol.59
, Issue.4-5
, pp. 291-294
-
-
Bourlard, H.1
Kamp, Y.2
-
47
-
-
84923289508
-
A regression approach to speech enhancement based on deep neural networks
-
Xu, Y., Du, J., Dai, L.-R., Lee, C.-H.: A regression approach to speech enhancement based on deep neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP), 23 (1) (2015), 7-19.
-
(2015)
IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP)
, vol.23
, Issue.1
, pp. 7-19
-
-
Xu, Y.1
Du, J.2
Dai, L.-R.3
Lee, C.-H.4
-
48
-
-
84890492030
-
An investigation of deep neural networks for noise robust speech recognition
-
May
-
Seltzer, M.L., Yu, D., Wang, Y.: An investigation of deep neural networks for noise robust speech recognition, in 2013 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada, May 2013, 7398-7402.
-
(2013)
2013 IEEE Int Conf. on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada
, pp. 7398-7402
-
-
Seltzer, M.L.1
Yu, D.2
Wang, Y.3
-
49
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., 6 (6) (1984), 721-741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
50
-
-
5744249209
-
Equations of state calculations by fast computingmachines
-
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of state calculations by fast computingmachines. J. Chem. Phys., 21 (6) (1953), 1087-1092.
-
(1953)
J. Chem. Phys.
, vol.21
, Issue.6
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
51
-
-
0025683716
-
The origins of kriging
-
Cressie, N.: The origins of kriging. Math. Geol., 22 (3) (1990).
-
(1990)
Math. Geol.
, vol.22
, Issue.3
-
-
Cressie, N.1
-
52
-
-
0022594196
-
An introduction to hidden Markov models
-
Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Mag., 3 (1) (1986), 4-16.
-
(1986)
IEEE ASSP Mag.
, vol.3
, Issue.1
, pp. 4-16
-
-
Rabiner, L.R.1
Juang, B.H.2
-
53
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. IEEE Proc., (1989) 217-286.
-
(1989)
IEEE Proc.
, pp. 217-286
-
-
Rabiner, L.R.1
-
54
-
-
0004244302
-
-
Prentice-Hall, New Jersey
-
Rabiner, L.R., Juang, B.H.: Fundamental of Speech Recognition, ISBN-13: 978-0130151575, Prentice-Hall, New Jersey, 1993.
-
(1993)
Fundamental of Speech Recognition
-
-
Rabiner, L.R.1
Juang, B.H.2
-
55
-
-
84874485803
-
Investigations of deep neural networks for large vocabulary continuous speech recognition: WhyDNNSurpassesGMMsin acoustic modelling
-
Pan, J., Liu, C., Wang, Z., Hu, Y., Jiang, H.: Investigations of deep neural networks for large vocabulary continuous speech recognition: WhyDNNSurpassesGMMsin acoustic modelling, in Proc. Int. Symp. on Chinese Spoken Language Processing (ISCSLP'2012), Hong Kong, 2012.
-
(2012)
Proc. Int. Symp. on Chinese Spoken Language Processing (ISCSLP'2012), Hong Kong
-
-
Pan, J.1
Liu, C.2
Wang, Z.3
Hu, Y.4
Jiang, H.5
|