메뉴 건너뛰기




Volumn 34, Issue 9, 2016, Pages 746-756

4D Bioprinting for Biomedical Applications

Author keywords

[No Author keywords available]

Indexed keywords

3D PRINTERS; BIOCOMPATIBILITY; BIOLOGICAL MATERIALS; CELLS; CYTOLOGY; MEDICAL APPLICATIONS; SELF ASSEMBLY; TISSUE; TISSUE ENGINEERING;

EID: 84962016152     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.03.004     Document Type: Review
Times cited : (558)

References (41)
  • 1
    • 84945260706 scopus 로고    scopus 로고
    • Multimaterial magnetically assisted 3D printing of composite materials
    • 1 Kokkinis, D., et al. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun., 6, 2015, 8643.
    • (2015) Nat. Commun. , vol.6 , pp. 8643
    • Kokkinis, D.1
  • 2
    • 84929346722 scopus 로고    scopus 로고
    • Structural optimization of 3D-printed synthetic spider webs for high strength
    • 2 Qin, Z., et al. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat. Commun., 6, 2015, 8038.
    • (2015) Nat. Commun. , vol.6 , pp. 8038
    • Qin, Z.1
  • 3
    • 84900000967 scopus 로고    scopus 로고
    • Bio-inspired detoxification using 3D-printed hydrogel nanocomposites
    • 3 Gou, M., et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun., 5, 2014, 4774.
    • (2014) Nat. Commun. , vol.5 , pp. 4774
    • Gou, M.1
  • 4
    • 84929119055 scopus 로고    scopus 로고
    • Reinforcement of hydrogels using three-dimensionally printed microfibres
    • 4 Visser, J., et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun., 6, 2015, 7933.
    • (2015) Nat. Commun. , vol.6 , pp. 7933
    • Visser, J.1
  • 5
    • 84905725612 scopus 로고    scopus 로고
    • 3D bioprinting of tissues and organs
    • 5 Murphy, S.V., Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol. 32 (2014), 773–785.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 773-785
    • Murphy, S.V.1    Atala, A.2
  • 6
    • 84890048290 scopus 로고    scopus 로고
    • Three-dimensional drug printing: a structured review
    • 6 Ursan, I., et al. Three-dimensional drug printing: a structured review. J. Am. Pharm. Assoc. 53 (2013), 136–144.
    • (2013) J. Am. Pharm. Assoc. , vol.53 , pp. 136-144
    • Ursan, I.1
  • 7
    • 79951639575 scopus 로고    scopus 로고
    • Bio-electrosprays: from bio-analytics to a generic tool for the health sciences
    • 7 Jayasinghe, S.N., Bio-electrosprays: from bio-analytics to a generic tool for the health sciences. Analyst 136 (2011), 878–890.
    • (2011) Analyst , vol.136 , pp. 878-890
    • Jayasinghe, S.N.1
  • 8
    • 79551649124 scopus 로고    scopus 로고
    • A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform
    • 8 Xu, F., et al. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol. J. 6 (2011), 204–212.
    • (2011) Biotechnol. J. , vol.6 , pp. 204-212
    • Xu, F.1
  • 9
    • 33646567447 scopus 로고    scopus 로고
    • Bioprinting: a beginning
    • 9 Mironov, V., et al. Bioprinting: a beginning. Tissue Eng. 12 (2006), 631–634.
    • (2006) Tissue Eng. , vol.12 , pp. 631-634
    • Mironov, V.1
  • 10
    • 84906253692 scopus 로고    scopus 로고
    • Active origami by 4D printing
    • 10 Ge, Q., et al. Active origami by 4D printing. Smart Mater. Struct., 23, 2014, 094007.
    • (2014) Smart Mater. Struct. , vol.23 , pp. 094007
    • Ge, Q.1
  • 11
    • 84892697223 scopus 로고    scopus 로고
    • 4d Printing: multi-material shape change
    • 11 Tibbits, S., 4d Printing: multi-material shape change. Archit. Des. 84 (2014), 116–121.
    • (2014) Archit. Des. , vol.84 , pp. 116-121
    • Tibbits, S.1
  • 12
    • 84906482476 scopus 로고    scopus 로고
    • Advanced shape memory technology to reshape product design, manufacturing and recycling
    • 12 Yang, W.G., et al. Advanced shape memory technology to reshape product design, manufacturing and recycling. Polymers 6 (2014), 2287–2308.
    • (2014) Polymers , vol.6 , pp. 2287-2308
    • Yang, W.G.1
  • 13
    • 84948663175 scopus 로고    scopus 로고
    • Bioprinting of 3D hydrogels
    • 13 Stanton, M.M., et al. Bioprinting of 3D hydrogels. Lab Chip 15 (2015), 3111–3115.
    • (2015) Lab Chip , vol.15 , pp. 3111-3115
    • Stanton, M.M.1
  • 14
    • 84958756163 scopus 로고    scopus 로고
    • 3D printing of smart materials: a review on recent progresses in 4D printing
    • 14 Khoo, Z.X., et al. 3D printing of smart materials: a review on recent progresses in 4D printing. Virtual Phys. Prototyping 10 (2015), 103–122.
    • (2015) Virtual Phys. Prototyping , vol.10 , pp. 103-122
    • Khoo, Z.X.1
  • 15
    • 0034601245 scopus 로고    scopus 로고
    • Hydrogels in pharmaceutical formulations
    • 15 Peppas, N.A., et al. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 50 (2000), 27–46.
    • (2000) Eur. J. Pharm. Biopharm. , vol.50 , pp. 27-46
    • Peppas, N.A.1
  • 16
    • 84881574915 scopus 로고    scopus 로고
    • Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers
    • 16 Jamal, M., et al. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv. Healthcare Mater. 2 (2013), 1142–1150.
    • (2013) Adv. Healthcare Mater. , vol.2 , pp. 1142-1150
    • Jamal, M.1
  • 17
    • 83455192382 scopus 로고    scopus 로고
    • Formation of droplet networks that function in aqueous environments
    • 17 Villar, G., et al. Formation of droplet networks that function in aqueous environments. Nat. Nanotechnol. 6 (2011), 803–808.
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 803-808
    • Villar, G.1
  • 18
    • 84876331506 scopus 로고    scopus 로고
    • A tissue-like printed material
    • 18 Villar, G., et al. A tissue-like printed material. Science 340 (2013), 48–52.
    • (2013) Science , vol.340 , pp. 48-52
    • Villar, G.1
  • 19
    • 84874631775 scopus 로고    scopus 로고
    • Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit
    • 19 Yu, Y., et al. Biomedical implementation of liquid metal ink as drawable ECG electrode and skin circuit. PLoS ONE, 8, 2013, e58771.
    • (2013) PLoS ONE , vol.8 , pp. e58771
    • Yu, Y.1
  • 20
    • 84948807984 scopus 로고    scopus 로고
    • Transitional suspensions containing thermosensitive dispersant for three-dimensional printing
    • 20 Wang, X., et al. Transitional suspensions containing thermosensitive dispersant for three-dimensional printing. ACS Appl. Mater. Interface 7 (2015), 26131–26136.
    • (2015) ACS Appl. Mater. Interface , vol.7 , pp. 26131-26136
    • Wang, X.1
  • 21
    • 84931566221 scopus 로고    scopus 로고
    • 4D Printing with mechanically robust, thermally actuating hydrogels
    • 21 Bakarich, S.E., et al. 4D Printing with mechanically robust, thermally actuating hydrogels. Macromol. Rapid Commun. 36 (2015), 1211–1217.
    • (2015) Macromol. Rapid Commun. , vol.36 , pp. 1211-1217
    • Bakarich, S.E.1
  • 22
    • 85027934971 scopus 로고    scopus 로고
    • TRANSPLANTATION 3D printing of the liver in living donor liver transplantation
    • 22 Ikegami, T., Maehara, Y., TRANSPLANTATION 3D printing of the liver in living donor liver transplantation. Nat. Rev. Gastro Hepat., 10, 2013, 697.
    • (2013) Nat. Rev. Gastro Hepat. , vol.10 , pp. 697
    • Ikegami, T.1    Maehara, Y.2
  • 23
    • 84881052591 scopus 로고    scopus 로고
    • 3D printing of anatomical heart models for surgical planning in cardiac surgery
    • 23 Weber, S., et al. 3D printing of anatomical heart models for surgical planning in cardiac surgery. Int. J. Comput. Assist. Radiol. Surg. 2 (2007), S160–S180.
    • (2007) Int. J. Comput. Assist. Radiol. Surg. , vol.2 , pp. S160-S180
    • Weber, S.1
  • 24
    • 79955853787 scopus 로고    scopus 로고
    • Self-folding all-polymer thermoresponsive microcapsules
    • 24 Stoychev, G., et al. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7 (2011), 3277–3279.
    • (2011) Soft Matter , vol.7 , pp. 3277-3279
    • Stoychev, G.1
  • 25
    • 84925852036 scopus 로고    scopus 로고
    • Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications
    • 25 Gandhi, A., et al. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J. Pharm. Sci. 10 (2015), 99–107.
    • (2015) Asian J. Pharm. Sci. , vol.10 , pp. 99-107
    • Gandhi, A.1
  • 26
    • 84903737158 scopus 로고    scopus 로고
    • Creating perfused functional vascular channels using 3D bio-printing technology
    • 26 Lee, V.K., et al. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35 (2014), 8092–8102.
    • (2014) Biomaterials , vol.35 , pp. 8092-8102
    • Lee, V.K.1
  • 27
    • 81155150132 scopus 로고    scopus 로고
    • Organ printing: the future of bone regeneration?
    • 27 Fedorovich, N.E., et al. Organ printing: the future of bone regeneration?. Trends Biotechnol. 29 (2011), 601–606.
    • (2011) Trends Biotechnol. , vol.29 , pp. 601-606
    • Fedorovich, N.E.1
  • 28
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • 28 Miller, J.S., et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11 (2012), 768–774.
    • (2012) Nat. Mater. , vol.11 , pp. 768-774
    • Miller, J.S.1
  • 29
    • 84900988712 scopus 로고    scopus 로고
    • 3D Bioprinting of vascularized, heterogeneous cell-laden tissue constructs
    • 29 Kolesky, D.B., et al. 3D Bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26 (2014), 3124–3130.
    • (2014) Adv. Mater. , vol.26 , pp. 3124-3130
    • Kolesky, D.B.1
  • 30
    • 60549108145 scopus 로고    scopus 로고
    • Organ printing: tissue spheroids as building blocks
    • 30 Mironov, V., et al. Organ printing: tissue spheroids as building blocks. Biomaterials 30 (2009), 2164–2174.
    • (2009) Biomaterials , vol.30 , pp. 2164-2174
    • Mironov, V.1
  • 31
    • 84934293712 scopus 로고    scopus 로고
    • Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering
    • 31 Blakely, A.M., et al. Bio-pick, place, and perfuse: a new instrument for three-dimensional tissue engineering. Tissue Eng. Part C Method 21 (2015), 737–746.
    • (2015) Tissue Eng. Part C Method , vol.21 , pp. 737-746
    • Blakely, A.M.1
  • 32
    • 84923829773 scopus 로고    scopus 로고
    • A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels
    • 32 Rutz, A.L., et al. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27 (2015), 1607–1614.
    • (2015) Adv. Mater. , vol.27 , pp. 1607-1614
    • Rutz, A.L.1
  • 33
    • 24944569212 scopus 로고    scopus 로고
    • Engineering vascularized tissue
    • 33 Jain, R.K., et al. Engineering vascularized tissue. Nat. Biotechnol. 23 (2005), 821–823.
    • (2005) Nat. Biotechnol. , vol.23 , pp. 821-823
    • Jain, R.K.1
  • 34
    • 34548650403 scopus 로고    scopus 로고
    • The roles of hypoxia in the in vitro engineering of tissues
    • 34 Malda, J., et al. The roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 13 (2007), 2153–2162.
    • (2007) Tissue Eng. , vol.13 , pp. 2153-2162
    • Malda, J.1
  • 35
    • 69249208450 scopus 로고    scopus 로고
    • Scaffold-free vascular tissue engineering using bioprinting
    • 35 Norotte, C., et al. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30 (2009), 5910–5917.
    • (2009) Biomaterials , vol.30 , pp. 5910-5917
    • Norotte, C.1
  • 36
    • 84879112861 scopus 로고    scopus 로고
    • Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction
    • 36 Hong, S., et al. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. J. Biosci. Bioeng. 116 (2013), 224–230.
    • (2013) J. Biosci. Bioeng. , vol.116 , pp. 224-230
    • Hong, S.1
  • 37
    • 84871247881 scopus 로고    scopus 로고
    • Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force
    • 37 Kuribayashi-Shigetomi, K., et al. Cell origami: self-folding of three-dimensional cell-laden microstructures driven by cell traction force. PLoS ONE, 7, 2012, e51085.
    • (2012) PLoS ONE , vol.7 , pp. e51085
    • Kuribayashi-Shigetomi, K.1
  • 38
    • 84867486363 scopus 로고    scopus 로고
    • Microfluidic hydrogels for tissue engineering
    • 38 Huang, G.Y., et al. Microfluidic hydrogels for tissue engineering. Biofabrication, 3, 2011, 012001.
    • (2011) Biofabrication , vol.3 , pp. 012001
    • Huang, G.Y.1
  • 39
    • 20444384374 scopus 로고    scopus 로고
    • Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique
    • 39 Yan, Y.N., et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 26 (2005), 5864–5871.
    • (2005) Biomaterials , vol.26 , pp. 5864-5871
    • Yan, Y.N.1
  • 40
    • 84922282288 scopus 로고    scopus 로고
    • Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration
    • 40 Pati, F., et al. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37 (2015), 230–241.
    • (2015) Biomaterials , vol.37 , pp. 230-241
    • Pati, F.1
  • 41
    • 29244447704 scopus 로고    scopus 로고
    • An oral delivery device based on self-folding hydrogels
    • 41 He, H.Y., et al. An oral delivery device based on self-folding hydrogels. J. Control. Release 110 (2006), 339–346.
    • (2006) J. Control. Release , vol.110 , pp. 339-346
    • He, H.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.