메뉴 건너뛰기




Volumn 24, Issue 1, 2017, Pages 47-69

Label propagation based semi-supervised learning for software defect prediction

Author keywords

Label propagation; Nonnegative sparse graph; Nonnegative sparse graph based label propagation (NSGLP); Semi supervised learning; Software defect prediction

Indexed keywords

DEFECTS; FORECASTING; GRAPH THEORY; GRAPHIC METHODS; ITERATIVE METHODS; NASA; SOFTWARE ENGINEERING; SUPERVISED LEARNING;

EID: 84961855351     PISSN: 09288910     EISSN: 15737535     Source Type: Journal    
DOI: 10.1007/s10515-016-0194-x     Document Type: Article
Times cited : (111)

References (51)
  • 1
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 6(1), 20–29 (2004)
    • (2004) ACM Sigkdd Explorations Newsletter. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.1    Prati, R.C.2    Monard, M.C.3
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(11), 2399–2434 (2006)
    • (2006) J. Mach. Learn. Res. , vol.7 , Issue.11 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 3
    • 60249092995 scopus 로고    scopus 로고
    • A systematic review of software fault prediction studies
    • Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl. 36(4), 7346–7354 (2009a)
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7346-7354
    • Catal, C.1    Diri, B.2
  • 4
    • 71049125694 scopus 로고    scopus 로고
    • Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction
    • Catal, C., Diri, B.: Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction. Expert Syst. 26(5), 458–471 (2009b)
    • (2009) Expert Syst. , vol.26 , Issue.5 , pp. 458-471
    • Catal, C.1    Diri, B.2
  • 5
    • 84889685646 scopus 로고    scopus 로고
    • A comparison of semi-supervised classification approaches for software defect prediction
    • Catal, C.: A comparison of semi-supervised classification approaches for software defect prediction. J. Intell. Syst. 23(1), 75–82 (2014)
    • (2014) J. Intell. Syst. , vol.23 , Issue.1 , pp. 75-82
    • Catal, C.1
  • 6
    • 0031471870 scopus 로고    scopus 로고
    • Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups
    • Chan, Y., Walmsley, R.P.: Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys. Ther. 77(12), 1755–1761 (1997)
    • (1997) Phys. Ther. , vol.77 , Issue.12 , pp. 1755-1761
    • Chan, Y.1    Walmsley, R.P.2
  • 10
    • 0034245310 scopus 로고    scopus 로고
    • Quantitative analysis of faults and failures in a complex software system
    • Fenton, N., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software system. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)
    • (2000) IEEE Trans. Softw. Eng. , vol.26 , Issue.8 , pp. 797-814
    • Fenton, N.1    Ohlsson, N.2
  • 12
    • 84893751437 scopus 로고    scopus 로고
    • The use of under- and oversampling within ensemble feature selection and classification for software quality prediction
    • Gao, K., Khoshgoftaar, T.M., Wald, R.: The use of under- and oversampling within ensemble feature selection and classification for software quality prediction. Int. J. Reliab. Qual. Saf. Eng. 21(1), 145004 (2014)
    • (2014) Int. J. Reliab. Qual. Saf. Eng. , vol.21 , Issue.1 , pp. 145004
    • Gao, K.1    Khoshgoftaar, T.M.2    Wald, R.3
  • 16
    • 84870561393 scopus 로고    scopus 로고
    • A systematic literature review on fault prediction performance in software engineering
    • Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)
    • (2012) IEEE Trans. Softw. Eng. , vol.38 , Issue.6 , pp. 1276-1304
    • Hall, T.1    Beecham, S.2    Bowes, D.3    Gray, D.4    Counsell, S.5
  • 18
    • 79953007594 scopus 로고    scopus 로고
    • Software defect detection with ROCUS
    • Jiang, Y., Li, M., Zhou, Z.H.: Software defect detection with ROCUS. J. Comput. Sci. Technol. 26(2), 328–342 (2011)
    • (2011) J. Comput. Sci. Technol. , vol.26 , Issue.2 , pp. 328-342
    • Jiang, Y.1    Li, M.2    Zhou, Z.H.3
  • 24
    • 84914106409 scopus 로고    scopus 로고
    • Software defect prediction using ensemble learning on selected features
    • Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble learning on selected features. Inf. Softw. Technol. 58, 388–402 (2015)
    • (2015) Inf. Softw. Technol. , vol.58 , pp. 388-402
    • Laradji, I.H.1    Alshayeb, M.2    Ghouti, L.3
  • 25
    • 84856674640 scopus 로고    scopus 로고
    • Sample-based software defect prediction with active and semi-supervised learning
    • Li, M., Zhang, H., Wu, R., Zhou, Z.H.: Sample-based software defect prediction with active and semi-supervised learning. Autom. Softw. Eng. 19(2), 201–230 (2012)
    • (2012) Autom. Softw. Eng. , vol.19 , Issue.2 , pp. 201-230
    • Li, M.1    Zhang, H.2    Wu, R.3    Zhou, Z.H.4
  • 31
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)
    • (2007) IEEE Trans. Softw. Eng. , vol.33 , Issue.1 , pp. 2-13
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 32
    • 84898980291 scopus 로고    scopus 로고
    • S.: A mixture of experts classifier with learning based on both labelled and unlabelled data
    • Miller, D. J., Uyar, H. S.: A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Advances in neural information processing systems, pp. 571–577 (1997)
    • (1997) Advances in neural information processing systems , pp. 571-577
    • Miller, D.J.1    Uyar, H.2
  • 34
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)
    • (2000) Mach. Learn. , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 36
    • 34548214178 scopus 로고    scopus 로고
    • Software quality estimation with limited fault data: a semi-supervised learning perspective
    • Seliya, N., Khoshgoftaar, T.M.: Software quality estimation with limited fault data: a semi-supervised learning perspective. Softw. Qual. J. 15(3), 327–344 (2007a)
    • (2007) Softw. Qual. J. , vol.15 , Issue.3 , pp. 327-344
    • Seliya, N.1    Khoshgoftaar, T.M.2
  • 37
    • 33947597252 scopus 로고    scopus 로고
    • Software quality analysis of unlabeled program modules with semisupervised clustering
    • Seliya, N., Khoshgoftaar, T.M.: Software quality analysis of unlabeled program modules with semisupervised clustering. IEEE Trans. Syst. Man. Cyber. 37(2), 201–211 (2007b)
    • (2007) IEEE Trans. Syst. Man. Cyber. , vol.37 , Issue.2 , pp. 201-211
    • Seliya, N.1    Khoshgoftaar, T.M.2
  • 38
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
    • Shahshahani, B.M., Landgrebe, D.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32(5), 1087–1095 (1994)
    • (1994) IEEE Trans. Geosci. Remote Sens. , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.2
  • 39
    • 84883321067 scopus 로고    scopus 로고
    • Data quality: some comments on the NASA software defect datasets
    • Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: some comments on the NASA software defect datasets. IEEE Trans. Softw. Eng. 39(9), 1208–1215 (2013)
    • (2013) IEEE Trans. Softw. Eng. , vol.39 , Issue.9 , pp. 1208-1215
    • Shepperd, M.1    Song, Q.2    Sun, Z.3    Mair, C.4
  • 40
    • 84871802491 scopus 로고    scopus 로고
    • Using coding based ensemble learning to improve software defect prediction
    • Sun, Z.B., Song, Q.B., Zhu, X.Y.: Using coding based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cyber. C 42(6), 1806–1817 (2012)
    • (2012) IEEE Trans. Syst. Man Cyber. C , vol.42 , Issue.6 , pp. 1806-1817
    • Sun, Z.B.1    Song, Q.B.2    Zhu, X.Y.3
  • 41
    • 72449126753 scopus 로고    scopus 로고
    • On the relative value of cross-company and within-company data for defect prediction
    • Turhan, B., Menzies, T., Bener, A.: On the relative value of cross-company and within-company data for defect prediction. Empirical Softw. Eng. 14(5), 540–578 (2009)
    • (2009) Empirical Softw. Eng. , vol.14 , Issue.5 , pp. 540-578
    • Turhan, B.1    Menzies, T.2    Bener, A.3
  • 42
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 20(1), 55–67 (2008)
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.1 , pp. 55-67
    • Wang, F.1    Zhang, C.2
  • 43
    • 84878691303 scopus 로고    scopus 로고
    • Using class imbalance learning for software defect prediction
    • Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)
    • (2013) IEEE Trans. Reliab. , vol.62 , Issue.2 , pp. 434-443
    • Wang, S.1    Yao, X.2
  • 47
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Zhou, Z.-H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 48
    • 35348881683 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training style algorithms
    • Zhou, Z.-H., Li, M.: Semi-supervised regression with co-training style algorithms. IEEE Trans. Knowl. Data Eng. 19(11), 1479–1493 (2007)
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.-H.1    Li, M.2
  • 50
    • 26444592207 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107
    • Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University (2002)
    • (2002) Carnegie Mellon University
    • Zhu, X.1    Ghahramani, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.