-
1
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
Batista, G.E., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM Sigkdd Explorations Newsletter. 6(1), 20–29 (2004)
-
(2004)
ACM Sigkdd Explorations Newsletter.
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.1
Prati, R.C.2
Monard, M.C.3
-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7(11), 2399–2434 (2006)
-
(2006)
J. Mach. Learn. Res.
, vol.7
, Issue.11
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
3
-
-
60249092995
-
A systematic review of software fault prediction studies
-
Catal, C., Diri, B.: A systematic review of software fault prediction studies. Expert Syst. Appl. 36(4), 7346–7354 (2009a)
-
(2009)
Expert Syst. Appl.
, vol.36
, Issue.4
, pp. 7346-7354
-
-
Catal, C.1
Diri, B.2
-
4
-
-
71049125694
-
Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction
-
Catal, C., Diri, B.: Unlabelled extra data do not always mean extra performance for semi-supervised fault prediction. Expert Syst. 26(5), 458–471 (2009b)
-
(2009)
Expert Syst.
, vol.26
, Issue.5
, pp. 458-471
-
-
Catal, C.1
Diri, B.2
-
5
-
-
84889685646
-
A comparison of semi-supervised classification approaches for software defect prediction
-
Catal, C.: A comparison of semi-supervised classification approaches for software defect prediction. J. Intell. Syst. 23(1), 75–82 (2014)
-
(2014)
J. Intell. Syst.
, vol.23
, Issue.1
, pp. 75-82
-
-
Catal, C.1
-
6
-
-
0031471870
-
Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups
-
Chan, Y., Walmsley, R.P.: Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys. Ther. 77(12), 1755–1761 (1997)
-
(1997)
Phys. Ther.
, vol.77
, Issue.12
, pp. 1755-1761
-
-
Chan, Y.1
Walmsley, R.P.2
-
8
-
-
0346586663
-
SMOTE: synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artifici. Intell. Res. 16, 321–357 (2002)
-
(2002)
J. Artifici. Intell. Res.
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
10
-
-
0034245310
-
Quantitative analysis of faults and failures in a complex software system
-
Fenton, N., Ohlsson, N.: Quantitative analysis of faults and failures in a complex software system. IEEE Trans. Softw. Eng. 26(8), 797–814 (2000)
-
(2000)
IEEE Trans. Softw. Eng.
, vol.26
, Issue.8
, pp. 797-814
-
-
Fenton, N.1
Ohlsson, N.2
-
12
-
-
84893751437
-
The use of under- and oversampling within ensemble feature selection and classification for software quality prediction
-
Gao, K., Khoshgoftaar, T.M., Wald, R.: The use of under- and oversampling within ensemble feature selection and classification for software quality prediction. Int. J. Reliab. Qual. Saf. Eng. 21(1), 145004 (2014)
-
(2014)
Int. J. Reliab. Qual. Saf. Eng.
, vol.21
, Issue.1
, pp. 145004
-
-
Gao, K.1
Khoshgoftaar, T.M.2
Wald, R.3
-
15
-
-
82955251102
-
The misuse of the NASA metrics data program data sets for automated software defect prediction
-
Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The misuse of the NASA metrics data program data sets for automated software defect prediction. In: Proceedings of 15th Annual Conference on Evaluation and Assessment in Software Engineering, pp. 96–103 (2011)
-
(2011)
Proceedings of 15th Annual Conference on Evaluation and Assessment in Software Engineering
, pp. 96-103
-
-
Gray, D.1
Bowes, D.2
Davey, N.3
Sun, Y.4
Christianson, B.5
-
16
-
-
84870561393
-
A systematic literature review on fault prediction performance in software engineering
-
Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on fault prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–1304 (2012)
-
(2012)
IEEE Trans. Softw. Eng.
, vol.38
, Issue.6
, pp. 1276-1304
-
-
Hall, T.1
Beecham, S.2
Bowes, D.3
Gray, D.4
Counsell, S.5
-
17
-
-
84864039505
-
Laplacian score for feature selection
-
He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in Neural Information Processing Systems, pp. 507–514 (2005)
-
(2005)
Advances in Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
18
-
-
79953007594
-
Software defect detection with ROCUS
-
Jiang, Y., Li, M., Zhou, Z.H.: Software defect detection with ROCUS. J. Comput. Sci. Technol. 26(2), 328–342 (2011)
-
(2011)
J. Comput. Sci. Technol.
, vol.26
, Issue.2
, pp. 328-342
-
-
Jiang, Y.1
Li, M.2
Zhou, Z.H.3
-
19
-
-
84994121213
-
Dictionary learning based software defect prediction
-
Jing, X. Y., Ying, S., Zhang, Z. W., Wu, S. S., Liu, J.: Dictionary learning based software defect prediction. In: Proceedings of the 36th International Conference on Software Engineering, pp. 414-423 (2014a)
-
(2014)
Proceedings of the 36th International Conference on Software Engineering, pp. 414-423
-
-
Jing, X.Y.1
Ying, S.2
Zhang, Z.W.3
Wu, S.S.4
Liu, J.5
-
20
-
-
84903639308
-
P.: Software defect prediction based on collaborative representation classification
-
Jing, X. Y., Zhang, Z. W., Ying, S., Wang, F., Zhu, Y. P.: Software defect prediction based on collaborative representation classification. In: Companion Proceedings of the 36th International Conference on Software Engineering, pp. 632–633 (2014b)
-
(2014)
Companion Proceedings of the 36th International Conference on Software Engineering, pp. 632–633
-
-
Jing, X.Y.1
Zhang, Z.W.2
Ying, S.3
Wang, F.4
Zhu, Y.5
-
22
-
-
78751556705
-
Attribute selection and imbalanced data: problems in software defect prediction
-
Khoshgoftaar, T. M., Gao, K., Seliya, N.: Attribute selection and imbalanced data: problems in software defect prediction. In: Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, pp. 137–144 (2010)
-
(2010)
Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence
, pp. 137-144
-
-
Khoshgoftaar, T.M.1
Gao, K.2
Seliya, N.3
-
24
-
-
84914106409
-
Software defect prediction using ensemble learning on selected features
-
Laradji, I.H., Alshayeb, M., Ghouti, L.: Software defect prediction using ensemble learning on selected features. Inf. Softw. Technol. 58, 388–402 (2015)
-
(2015)
Inf. Softw. Technol.
, vol.58
, pp. 388-402
-
-
Laradji, I.H.1
Alshayeb, M.2
Ghouti, L.3
-
25
-
-
84856674640
-
Sample-based software defect prediction with active and semi-supervised learning
-
Li, M., Zhang, H., Wu, R., Zhou, Z.H.: Sample-based software defect prediction with active and semi-supervised learning. Autom. Softw. Eng. 19(2), 201–230 (2012)
-
(2012)
Autom. Softw. Eng.
, vol.19
, Issue.2
, pp. 201-230
-
-
Li, M.1
Zhang, H.2
Wu, R.3
Zhou, Z.H.4
-
28
-
-
84866952457
-
Software defect prediction using semi-supervised learning with dimension reduction
-
Lu, H., Cukic, B., Culp, M.: Software defect prediction using semi-supervised learning with dimension reduction. In: Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 314–317 (2012)
-
(2012)
Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 314–317
-
-
Lu, H.1
Cukic, B.2
Culp, M.3
-
31
-
-
33845782503
-
Data mining static code attributes to learn defect predictors
-
Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE Trans. Softw. Eng. 33(1), 2–13 (2007)
-
(2007)
IEEE Trans. Softw. Eng.
, vol.33
, Issue.1
, pp. 2-13
-
-
Menzies, T.1
Greenwald, J.2
Frank, A.3
-
32
-
-
84898980291
-
S.: A mixture of experts classifier with learning based on both labelled and unlabelled data
-
Miller, D. J., Uyar, H. S.: A mixture of experts classifier with learning based on both labelled and unlabelled data. In: Advances in neural information processing systems, pp. 571–577 (1997)
-
(1997)
Advances in neural information processing systems
, pp. 571-577
-
-
Miller, D.J.1
Uyar, H.2
-
33
-
-
84886378360
-
Transfer defect learning
-
Nam, J., Pan, S. J., Kim, S.: Transfer defect learning. In: Proceedings of the 35th International Conference on Software Engineering, pp. 382–391 (2013)
-
(2013)
Proceedings of the 35th International Conference on Software Engineering
, pp. 382-391
-
-
Nam, J.1
Pan, S.J.2
Kim, S.3
-
34
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)
-
(2000)
Mach. Learn.
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
36
-
-
34548214178
-
Software quality estimation with limited fault data: a semi-supervised learning perspective
-
Seliya, N., Khoshgoftaar, T.M.: Software quality estimation with limited fault data: a semi-supervised learning perspective. Softw. Qual. J. 15(3), 327–344 (2007a)
-
(2007)
Softw. Qual. J.
, vol.15
, Issue.3
, pp. 327-344
-
-
Seliya, N.1
Khoshgoftaar, T.M.2
-
37
-
-
33947597252
-
Software quality analysis of unlabeled program modules with semisupervised clustering
-
Seliya, N., Khoshgoftaar, T.M.: Software quality analysis of unlabeled program modules with semisupervised clustering. IEEE Trans. Syst. Man. Cyber. 37(2), 201–211 (2007b)
-
(2007)
IEEE Trans. Syst. Man. Cyber.
, vol.37
, Issue.2
, pp. 201-211
-
-
Seliya, N.1
Khoshgoftaar, T.M.2
-
38
-
-
0028499630
-
The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon
-
Shahshahani, B.M., Landgrebe, D.: The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon. IEEE Trans. Geosci. Remote Sens. 32(5), 1087–1095 (1994)
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.5
, pp. 1087-1095
-
-
Shahshahani, B.M.1
Landgrebe, D.2
-
39
-
-
84883321067
-
Data quality: some comments on the NASA software defect datasets
-
Shepperd, M., Song, Q., Sun, Z., Mair, C.: Data quality: some comments on the NASA software defect datasets. IEEE Trans. Softw. Eng. 39(9), 1208–1215 (2013)
-
(2013)
IEEE Trans. Softw. Eng.
, vol.39
, Issue.9
, pp. 1208-1215
-
-
Shepperd, M.1
Song, Q.2
Sun, Z.3
Mair, C.4
-
40
-
-
84871802491
-
Using coding based ensemble learning to improve software defect prediction
-
Sun, Z.B., Song, Q.B., Zhu, X.Y.: Using coding based ensemble learning to improve software defect prediction. IEEE Trans. Syst. Man Cyber. C 42(6), 1806–1817 (2012)
-
(2012)
IEEE Trans. Syst. Man Cyber. C
, vol.42
, Issue.6
, pp. 1806-1817
-
-
Sun, Z.B.1
Song, Q.B.2
Zhu, X.Y.3
-
41
-
-
72449126753
-
On the relative value of cross-company and within-company data for defect prediction
-
Turhan, B., Menzies, T., Bener, A.: On the relative value of cross-company and within-company data for defect prediction. Empirical Softw. Eng. 14(5), 540–578 (2009)
-
(2009)
Empirical Softw. Eng.
, vol.14
, Issue.5
, pp. 540-578
-
-
Turhan, B.1
Menzies, T.2
Bener, A.3
-
42
-
-
36648998944
-
Label propagation through linear neighborhoods
-
Wang, F., Zhang, C.: Label propagation through linear neighborhoods. IEEE Trans. Knowl. Data Eng. 20(1), 55–67 (2008)
-
(2008)
IEEE Trans. Knowl. Data Eng.
, vol.20
, Issue.1
, pp. 55-67
-
-
Wang, F.1
Zhang, C.2
-
43
-
-
84878691303
-
Using class imbalance learning for software defect prediction
-
Wang, S., Yao, X.: Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 62(2), 434–443 (2013)
-
(2013)
IEEE Trans. Reliab.
, vol.62
, Issue.2
, pp. 434-443
-
-
Wang, S.1
Yao, X.2
-
44
-
-
61549128441
-
Robust Face Recognition via Sparse Representation
-
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust Face Recognition via Sparse Representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.Y.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
46
-
-
84899006908
-
Learning with local and global consistency
-
Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. Adv. Neural Inf. Process. Syst. 16(16), 321–328 (2004)
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
, Issue.16
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.N.3
Weston, J.4
Schölkopf, B.5
-
47
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Zhou, Z.-H., Li, M.: Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Eng. 17(11), 1529–1541 (2005)
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
-
48
-
-
35348881683
-
Semi-supervised regression with co-training style algorithms
-
Zhou, Z.-H., Li, M.: Semi-supervised regression with co-training style algorithms. IEEE Trans. Knowl. Data Eng. 19(11), 1479–1493 (2007)
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, Issue.11
, pp. 1479-1493
-
-
Zhou, Z.-H.1
Li, M.2
-
50
-
-
26444592207
-
Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107
-
Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University (2002)
-
(2002)
Carnegie Mellon University
-
-
Zhu, X.1
Ghahramani, Z.2
-
51
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions
-
Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using gaussian fields and harmonic functions. In: Proceedings of the 20th International Conference on Machine Learning, pp. 912–919 (2003)
-
(2003)
Proceedings of the 20th International Conference on Machine Learning, pp. 912–919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
|