메뉴 건너뛰기




Volumn 15, Issue 3, 2007, Pages 327-344

Software quality estimation with limited fault data: a semi-supervised learning perspective

Author keywords

Expectation maximization; Semi supervised learning; Software metrics; Software quality estimation; Unlabeled data

Indexed keywords

ALGORITHMS; COMPUTER SOFTWARE SELECTION AND EVALUATION; ESTIMATION; MAXIMUM PRINCIPLE; NASA; SOFTWARE ENGINEERING; SOFTWARE TESTING;

EID: 34548214178     PISSN: 09639314     EISSN: 15731367     Source Type: Journal    
DOI: 10.1007/s11219-007-9013-8     Document Type: Article
Times cited : (70)

References (30)
  • 1
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • P. Bartlett & Y. Mansour Eds, Madison, WI, July, ACM Press
    • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In P. Bartlett & Y. Mansour (Eds), Proceedings of 11th annual ACM conference on computational learning theory, Madison, WI, July 1998, pp. 92-100, ACM Press.
    • (1998) Proceedings of 11th annual ACM conference on computational learning theory , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 3
    • 0012297834 scopus 로고    scopus 로고
    • Optimization approaches to semisupervised learning
    • M. Ferris, O. Mangasarian, & J. Pang Eds, Boston, MA: Kluwer Academic Publishers
    • Demirez, A., & Bennett, K. (2000). Optimization approaches to semisupervised learning. In M. Ferris, O. Mangasarian, & J. Pang (Eds), Applications and algorithms of complementarity. Boston, MA: Kluwer Academic Publishers.
    • (2000) Applications and algorithms of complementarity
    • Demirez, A.1    Bennett, K.2
  • 5
    • 0036454664 scopus 로고    scopus 로고
    • Semi-supervised support vector machines for unlabeled data classification
    • Fung, G., & Mangasarian, O. (2001). Semi-supervised support vector machines for unlabeled data classification. Optimization Methods and Software, 15, 29-44.
    • (2001) Optimization Methods and Software , vol.15 , pp. 29-44
    • Fung, G.1    Mangasarian, O.2
  • 6
    • 0001551844 scopus 로고
    • Supervised learning from incomplete data via an EM approach
    • J. D. Cowan, G. Tesauro, & J. Alspector Eds, Morgan Kaufmann: San Francisco, CA
    • Ghahramani, Z., & Jordan, M, I. (1994). Supervised learning from incomplete data via an EM approach. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems (Vol. 6, pp. 120-127). Morgan Kaufmann: San Francisco, CA.
    • (1994) Advances in neural information processing systems , vol.6 , pp. 120-127
    • Ghahramani, Z.1    Jordan, M.I.2
  • 7
    • 0011711452 scopus 로고    scopus 로고
    • Regression tree modeling for the prediction of software quality
    • H. Pham Ed, Anaheim, CA, March, International Society of Science and Applied Technologies
    • Gokhale, S. S., & Lyu, M. R. (1997). Regression tree modeling for the prediction of software quality. In H. Pham (Ed.), Proceedings of 3rd international conference on reliability and. quality in design, Anaheim, CA, March 1997, pp. 31-36, International Society of Science and Applied Technologies.
    • (1997) Proceedings of 3rd international conference on reliability and. quality in design , pp. 31-36
    • Gokhale, S.S.1    Lyu, M.R.2
  • 8
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • Stanford University, CA, June-July, Morgan Kaufmann
    • Goldman, S., & Zhou, Y. (2000). Enhancing supervised learning with unlabeled data. In Proceedings of 17th international conference on machine learning, Stanford University, CA, June-July 2000, pp. 327-334, Morgan Kaufmann.
    • (2000) Proceedings of 17th international conference on machine learning , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 9
    • 0033324327 scopus 로고    scopus 로고
    • Software metrics data analysis: Exploring the relative performance of some commonly used modeling techniques
    • Gray, A. R., & MacDonell, S. G. (1999). Software metrics data analysis: Exploring the relative performance of some commonly used modeling techniques. Empirical Software Engineering Journal, 4, 297-316.
    • (1999) Empirical Software Engineering Journal , vol.4 , pp. 297-316
    • Gray, A.R.1    MacDonell, S.G.2
  • 10
    • 84871122711 scopus 로고    scopus 로고
    • Predicting fault prone modules by the dempster-shafer belief networks
    • Montreal, Quebec, Canada, October, IEEE Computer Society
    • Guo, L., Cukic, B., & Singh, H. (2003). Predicting fault prone modules by the dempster-shafer belief networks. In Proceedings of the 18th international conference on automated software engineering, Montreal, Quebec, Canada, October 2003, pp. 249-252, IEEE Computer Society.
    • (2003) Proceedings of the 18th international conference on automated software engineering , pp. 249-252
    • Guo, L.1    Cukic, B.2    Singh, H.3
  • 11
    • 0035152294 scopus 로고    scopus 로고
    • Comparing case-based reasoning classifiers for predicting high-risk software componenets
    • Imam, K. E., Benlarbi, S., Goel, N., & Rai, S. N. (2001). Comparing case-based reasoning classifiers for predicting high-risk software componenets. Journal of Systems and Software, 55(3), 301-320.
    • (2001) Journal of Systems and Software , vol.55 , Issue.3 , pp. 301-320
    • Imam, K.E.1    Benlarbi, S.2    Goel, N.3    Rai, S.N.4
  • 14
    • 37349129968 scopus 로고    scopus 로고
    • Tree-based software quality models for fault prediction
    • Ottawa, Ontario, Canada, June, IEEE Computer Society
    • Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-based software quality models for fault prediction. In Proceedings of 8th International software metrics symposium, Ottawa, Ontario, Canada, June 2002, pp. 203-214, IEEE Computer Society.
    • (2002) Proceedings of 8th International software metrics symposium , pp. 203-214
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 15
    • 0141924286 scopus 로고    scopus 로고
    • Analogy-based practical classification rules for software quality estimation
    • Khoshgoftaar, T. M., & Seliya, N. (2003). Analogy-based practical classification rules for software quality estimation. Empirical Software Engineering Journal, 8(4), 325-350.
    • (2003) Empirical Software Engineering Journal , vol.8 , Issue.4 , pp. 325-350
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 16
    • 0034482502 scopus 로고    scopus 로고
    • Balancing misclassification rates in classification tree models of software quality
    • Kluwer Academic Publishers
    • Khoshgoftaar, T. M., Yuan, X., & Allen, E. B. (2000). Balancing misclassification rates in classification tree models of software quality. Empirical Software Engineering Journal, 5, 313-330, Kluwer Academic Publishers.
    • (2000) Empirical Software Engineering Journal , vol.5 , pp. 313-330
    • Khoshgoftaar, T.M.1    Yuan, X.2    Allen, E.B.3
  • 20
    • 0000314722 scopus 로고    scopus 로고
    • Employing EM and pool-based active learning for text classification
    • Madison, WI, July, Morgan Kaufmann
    • McCallum, A. K., & Nigam K. (1998). Employing EM and pool-based active learning for text classification. In Proceedings of the 15th international conference on machine learning, Madison, WI, July 1998, pp. 350-358, Morgan Kaufmann.
    • (1998) Proceedings of the 15th international conference on machine learning , pp. 350-358
    • McCallum, A.K.1    Nigam, K.2
  • 21
    • 0005320050 scopus 로고    scopus 로고
    • The role of unlabeled data in supervised learning
    • Donostia, San Sebastian, Spain, May, Institute for Logic, Cognition, Language and Information
    • Mitchell, T. (1999). The role of unlabeled data in supervised learning. In Proceedings of the 6th international colloquium on cognitive science, Donostia, San Sebastian, Spain, May 1999, Institute for Logic, Cognition, Language and Information.
    • (1999) Proceedings of the 6th international colloquium on cognitive science
    • Mitchell, T.1
  • 24
    • 84948456456 scopus 로고    scopus 로고
    • Experience from replicating empirical studies on prediction models
    • Ottawa, Ontario, Canada, June, IEEE Computer Society
    • Ohlsson, M. C., & Runeson, P. (2002). Experience from replicating empirical studies on prediction models. In Proceedings of 8th International software metrics symposium, Ottawa, Ontario, Canada, June 2002, pp. 217-226, IEEE Computer Society.
    • (2002) Proceedings of 8th International software metrics symposium , pp. 217-226
    • Ohlsson, M.C.1    Runeson, P.2
  • 25
    • 0036086035 scopus 로고    scopus 로고
    • Software quality prediction using median-adjusted class labels
    • Honolulu, HI, May, IEEE Computer Society
    • Pizzi, N. J., Summers, R., & Pedrycz, W. (2002). Software quality prediction using median-adjusted class labels. In Proceedings of international joint conference on neural networks, Honolulu, HI, May 2002, Vol. 3, pp. 2405-2409, IEEE Computer Society.
    • (2002) Proceedings of international joint conference on neural networks , vol.3 , pp. 2405-2409
    • Pizzi, N.J.1    Summers, R.2    Pedrycz, W.3
  • 26
    • 0035015223 scopus 로고    scopus 로고
    • Investigation of logistic regression as a discriminant of software quality
    • London, UK, April, IEEE Computer Society
    • Schneidewind, N. F. (2001). Investigation of logistic regression as a discriminant of software quality. In Proceedings of 7th international software metrics symposium, London, UK, April 2001, pp. 328-337, IEEE Computer Society.
    • (2001) Proceedings of 7th international software metrics symposium , pp. 328-337
    • Schneidewind, N.F.1
  • 27
    • 0036470012 scopus 로고    scopus 로고
    • Body of knowledge for software quality measurement
    • Schneidewind, N. F. (2002). Body of knowledge for software quality measurement. IEEE Computer, 35(2), 77-83.
    • (2002) IEEE Computer , vol.35 , Issue.2 , pp. 77-83
    • Schneidewind, N.F.1
  • 28
    • 0005977840 scopus 로고    scopus 로고
    • Learning with labeled and unlabeled data
    • Technical report, Institute for Adaptive and Neural Computation, University of Edinburgh, Scotland, UK, February
    • Seeger, M. (2001). Learning with labeled and unlabeled data. Technical report, Institute for Adaptive and Neural Computation, University of Edinburgh, Scotland, UK, February 2001.
    • (2001)
    • Seeger, M.1
  • 29
    • 0033307330 scopus 로고    scopus 로고
    • Globally optimal fuzzy decision trees for classification and regression
    • Suarez, A., & Lutsko, J. F. (1999). Globally optimal fuzzy decision trees for classification and regression. Pattern Analysis and Machine Intelligence, 27(12), 1297-1311.
    • (1999) Pattern Analysis and Machine Intelligence , vol.27 , Issue.12 , pp. 1297-1311
    • Suarez, A.1    Lutsko, J.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.