-
1
-
-
84855502336
-
From tetrapods to primates: Conserved developmental mechanisms in diverging ecological adaptations
-
doi: 10.1016/B978-0-444-53860-4.00001-5
-
Aboitiz, F., and Montiel, J. F. (2012). From tetrapods to primates: conserved developmental mechanisms in diverging ecological adaptations. Prog. Brain Res. 195, 3-24. doi: 10.1016/B978-0-444-53860-4.00001-5.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 3-24
-
-
Aboitiz, F.1
Montiel, J.F.2
-
3
-
-
64549116740
-
Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain
-
doi: 10.1002/cne.21974
-
Azevedo, F. A. C., Carvalho, L. R. B., Grinberg, L. T., Farfel, J. M., Ferretti, R. E. I., Leite, R. E. P., et al. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532-541. doi: 10.1002/cne.21974.
-
(2009)
J. Comp. Neurol
, vol.513
, pp. 532-541
-
-
Azevedo, F.A.C.1
Carvalho, L.R.B.2
Grinberg, L.T.3
Farfel, J.M.4
Ferretti, R.E.I.5
Leite, R.E.P.6
-
4
-
-
84888135161
-
Mechanical forces in the cerebral cortical folding: A review of measurements and models
-
doi: 10.1016/j.jmbbm.2013. 02.018
-
Bayly, P. V., Taber, L. A., and Kroenke, C. D. (2014). Mechanical forces in the cerebral cortical folding: a review of measurements and models. J. Mech. Behav. Biomed. Mater. 29, 568-581. doi: 10.1016/j.jmbbm.2013. 02.018.
-
(2014)
J. Mech. Behav. Biomed. Mater
, vol.29
, pp. 568-581
-
-
Bayly, P.V.1
Taber, L.A.2
Kroenke, C.D.3
-
5
-
-
63549119962
-
A proposal for a coordinated effort for the determination of brainwide neu-roanatomical connectivity in model organisms at a mesoscopic scale
-
doi: 10.1371/journal.pcbi.1000334
-
Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neu-roanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput. Biol. 5:e1000334. doi: 10.1371/journal.pcbi.1000334.
-
(2009)
PLoS Comput. Biol
, vol.5
-
-
Bohland, J.W.1
Wu, C.2
Barbas, H.3
Bokil, H.4
Bota, M.5
Breiter, H.C.6
-
6
-
-
84878043184
-
How do you wire a brain?
-
doi: 10.3389/fnana.2013.00014
-
Budd, J., and Kisvarday, Z. F. (2013). How do you wire a brain? Front. Neuroanat. 7:14. doi: 10.3389/fnana.2013.00014.
-
(2013)
Front Neuroanat
, vol.7
, pp. 14
-
-
Budd, J.1
Kisvarday, Z.F.2
-
7
-
-
84867045610
-
Communication and wiring in the cortical connectome
-
doi: 10.3389/fnana.2012.00042
-
Budd, J. M. L., and Kisvarday, Z. F. (2012). Communication and wiring in the cortical connectome. Front. Neuroanat. 6:42. doi: 10.3389/fnana.2012.00042.
-
(2012)
Front. Neuroanat
, vol.6
, pp. 42
-
-
Budd, J.M.L.1
Kisvarday, Z.F.2
-
8
-
-
84859948255
-
The economy of brain network organization
-
doi: 10.1038/nrn3214
-
Bullmore, E., and Sporns, O. (2012). The economy of brain network organization. Nat. Rev. Neurosci. 13, 336-349. doi: 10.1038/nrn3214.
-
(2012)
Nat. Rev. Neurosci
, vol.13
, pp. 336-349
-
-
Bullmore, E.1
Sporns, O.2
-
9
-
-
84855477607
-
Minicolumn size and human cortex
-
doi: 10.1016/B978-0-444-53860-4.00010-6
-
Buxhoeveden, D. P. (2012). Minicolumn size and human cortex. Prog. Brain Res. 195,219-235. doi: 10.1016/B978-0-444-53860-4.00010-6.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 219-235
-
-
Buxhoeveden, D.P.1
-
10
-
-
0036234544
-
The minicolumn hypothesis in neuroscience
-
doi: 10.1093/brain/awf110
-
Buxhoeveden, D. P., and Casanova, M. F. (2002). The minicolumn hypothesis in neuroscience. Brain 125, 935-951. doi: 10.1093/brain/awf110.
-
(2002)
Brain
, vol.125
, pp. 935-951
-
-
Buxhoeveden, D.P.1
Casanova, M.F.2
-
11
-
-
3042523540
-
Neuronal oscillations in cortical networks
-
doi: 10.1126/science.1099745
-
Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science304, 1926-1929. doi: 10.1126/science.1099745.
-
(2004)
Science304
, pp. 1926-1929
-
-
Buzsaki, G.1
Draguhn, A.2
-
12
-
-
84887011307
-
Scaling brain size, keeping time: Evolutionary preservation of brain rhythms
-
doi: 10.1016/j.neuron.2013.10.002
-
Buzsaki, G., Logothetis, N., and Singer, W. (2013). Scaling brain size, keeping time: evolutionary preservation of brain rhythms. Neuron 80, 751-764. doi: 10.1016/j.neuron.2013.10.002.
-
(2013)
Neuron
, vol.80
, pp. 751-764
-
-
Buzsaki, G.1
Logothetis, N.2
Singer, W.3
-
13
-
-
0035292635
-
Principles underlying mammalian neocortical scaling
-
doi: 10.1007/s004220000205
-
Changizi, M. A. (2001). Principles underlying mammalian neocortical scaling. Biol. Cybern. 84, 207-215. doi: 10.1007/s004220000205.
-
(2001)
Biol. Cybern
, vol.84
, pp. 207-215
-
-
Changizi, M.A.1
-
14
-
-
84882818009
-
-
in Evolution of Nervous Systems, Vol. 3, ed J.H. Kaas (New York, NY: Academic Press), doi: 10.1016/B0-12-370878-8/00061-6
-
Changizi, M. A. (2007). "Scaling the brain and its connections, in Evolution of Nervous Systems, Vol. 3, ed J.H. Kaas (New York, NY: Academic Press), 167-180. doi: 10.1016/B0-12-370878-8/00061-6.
-
(2007)
Scaling the Brain and Its Connections
, pp. 167-180
-
-
Changizi, M.A.1
-
15
-
-
23844531029
-
Parcellation and area-area connectivity as a function of neocortex size
-
doi: 10.1159/000085942
-
Changizi, M. A., and Shimojo, S. (2005). Parcellation and area-area connectivity as a function of neocortex size. Brain Behav. Evol. 66, 88-98. doi: 10.1159/000085942.
-
(2005)
Brain Behav. Evol
, vol.66
, pp. 88-98
-
-
Changizi, M.A.1
Shimojo, S.2
-
16
-
-
84855500482
-
Embracing covariation in brain evolution: Large brains, extended development, and flexible primate social systems
-
doi: 10.1016/B978-0-444-53860-4.00004-0
-
Charvet, C. J., and Finlay, B. (2012). Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. Prog. BrainRes. 195,71-87. doi: 10.1016/B978-0-444-53860-4.00004-0.
-
(2012)
Prog. BrainRes
, vol.195
, pp. 71-87
-
-
Charvet, C.J.1
Finlay, B.2
-
17
-
-
0025073636
-
The bounded brain: Toward quantitative neuroanatomy
-
doi: 10.1162/jocn.1990.2.1.58
-
Cherniak, C. (1990). The bounded brain: toward quantitative neuroanatomy. J. Cogn. Neurosci. 2, 58-66. doi: 10.1162/jocn.1990.2.1.58.
-
(1990)
J. Cogn. Neurosci
, vol.2
, pp. 58-66
-
-
Cherniak, C.1
-
18
-
-
0028850164
-
Neural component placement
-
doi: 10.1016/0166-2236(95)98373-7
-
Cherniak, C. (1995). Neural component placement. Trends Neurosci. 18, 522-527. doi: 10.1016/0166-2236(95)98373-7.
-
(1995)
Trends Neurosci
, vol.18
, pp. 522-527
-
-
Cherniak, C.1
-
19
-
-
84855511079
-
Neural wiring optimization
-
doi: 10.1016/B978-0-444-53860-4.00017-9
-
Cherniak, C. (2012). Neural wiring optimization. Prog. Brain Res. 195, 361-371. doi: 10.1016/B978-0-444-53860-4.00017-9.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 361-371
-
-
Cherniak, C.1
-
20
-
-
34548036725
-
Comparative aspects of cortical neurogenesis in vertebrates
-
doi: 10.1111/j.1469-7580.2007.00769.x
-
Cheung, A. F., Pollen, A. A., Tavare, A., DeProto, J., and Molnar, Z. (2007). Comparative aspects of cortical neurogenesis in vertebrates. J. Anat. 211, 164-176. doi: 10.1111/j.1469-7580.2007.00769.x
-
(2007)
J. Anat
, vol.211
, pp. 164-176
-
-
Cheung, A.F.1
Pollen, A.A.2
Tavare, A.3
Deproto, J.4
Molnar, Z.5
-
21
-
-
7244223157
-
Cortical rewiring and information storage
-
doi: 10.1038/nature03012
-
Chklovskii, D. B., Mel, B. W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 431, 782-788. doi: 10.1038/nature03012.
-
(2004)
Nature
, vol.431
, pp. 782-788
-
-
Chklovskii, D.B.1
Mel, B.W.2
Svoboda, K.3
-
22
-
-
0037171822
-
Wiring optimization in cortical circuits
-
doi: 10.1016/S0896-6273 (02)00679-7
-
Chklovskii, D. B., Schikorski, T., and Stevens, C. F. (2002). Wiring optimization in cortical circuits. Neuron 34, 341-347. doi: 10.1016/S0896-6273 (02)00679-7.
-
(2002)
Neuron
, vol.34
, pp. 341-347
-
-
Chklovskii, D.B.1
Schikorski, T.2
Stevens, C.F.3
-
23
-
-
0035837421
-
Scalable architecture in mammalian brains
-
doi: 10.1038/35075564
-
Clark, D. A., Mitra, P. P., and Wang, S. S.-H. (2001). Scalable architecture in mammalian brains. Nature 411, 189-192. doi: 10.1038/35075564.
-
(2001)
Nature
, vol.411
, pp. 189-192
-
-
Clark, D.A.1
Mitra, P.P.2
Wang, S.S.-H.3
-
25
-
-
84855933212
-
Whose cortical column would that be?
-
doi: 10.3389/fnana.2010.00016
-
Da Costa, N. M., and Martin, K. A. C. (2010). Whose cortical column would that be? Front. Neuroanat. 4:16. doi: 10.3389/fnana.2010.00016.
-
(2010)
Front. Neuroanat
, vol.4
, pp. 16
-
-
da Costa, N.M.1
Martin, K.A.C.2
-
26
-
-
77957209126
-
Rethinking mammalian brain evolution
-
Deacon, T. W. (1990). Rethinking mammalian brain evolution. Am. Zool. 30, 629-705.
-
(1990)
Am. Zool
, vol.30
, pp. 629-705
-
-
Deacon, T.W.1
-
27
-
-
0038372036
-
Microstructure of the neocortex: Comparative aspects
-
doi: 10.1023/A:1024130211265
-
DeFelipe, J., Alonso-Nanclares, L., and Arellano, J. I. (2002). Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31, 299-316. doi: 10.1023/A:1024130211265.
-
(2002)
J. Neurocytol
, vol.31
, pp. 299-316
-
-
Defelipe, J.1
Alonso-Nanclares, L.2
Arellano, J.I.3
-
28
-
-
84855495832
-
Hominins and the emergence of the modern human brain
-
doi: 10.1016/B978-0-444-53860- 4.00014-3
-
De Sousa, A., and Cunha, E. (2012). Hominins and the emergence of the modern human brain. Prog. Brain Res. 195, 293-322. doi: 10.1016/B978-0-444-53860- 4.00014-3.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 293-322
-
-
de Sousa, A.1
Cunha, E.2
-
29
-
-
3943088427
-
Neuronal circuits of the neocortex
-
doi: 10.1146/annurev.neuro.27.070203.144152
-
Douglas, R. J., and Martin, K. A. (2004). Neuronal circuits of the neocortex. Ann. Rev. Neurosci. 27, 419-451. doi: 10.1146/annurev.neuro.27.070203.144152.
-
(2004)
Ann. Rev. Neurosci
, vol.27
, pp. 419-451
-
-
Douglas, R.J.1
Martin, K.A.2
-
30
-
-
34250179969
-
Understanding primate brain evolution
-
doi: 10.1098/rstb.2006.2001
-
Dunbar, R. I. M., and Shultz, S. (2007a). Understanding primate brain evolution. Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci. 362, 649-658. doi: 10.1098/rstb.2006.2001.
-
(2007)
Phil. Trans. R. Soc. Lond. Ser. B Biol. Sci
, vol.362
, pp. 649-658
-
-
Dunbar, R.I.M.1
Shultz, S.2
-
31
-
-
34548672108
-
Evolution in the social brain
-
doi: 10.1126/science.1145463
-
Dunbar, R. I. M., and Shultz, S. (2007b). Evolution in the social brain. Science317, 1344-1347. doi: 10.1126/science.1145463.
-
(2007)
Science317
, pp. 1344-1347
-
-
Dunbar, R.I.M.1
Shultz, S.2
-
32
-
-
0000657387
-
Brain evolution in Homo: The "radiator theory
-
doi: 10.1017/S0140525X00078973
-
Falk, D. (1990). Brain evolution in Homo: the "radiator theory. Behav. Brain Sci. 13, 333-381. doi: 10.1017/S0140525X00078973.
-
(1990)
Behav. Brain Sci
, vol.13
, pp. 333-381
-
-
Falk, D.1
-
33
-
-
84897047671
-
-
in Handbook of Palaeoanthropology, Vol. 2, eds W. Henke and I. Tattersall (New York, NY: Springer)
-
Falk, D. (2007). "Evolution of the primate brain, in Handbook of Palaeoanthropology, Vol. 2, eds W. Henke and I. Tattersall (New York, NY: Springer), 1133-1162.
-
(2007)
Evolution of the Primate Brain
, pp. 1133-1162
-
-
Falk, D.1
-
34
-
-
84855508845
-
Hominin paleoneurology: Where are we now?
-
doi: 10.1016/B978-0-444-53860-4.00012-X
-
Falk, D. (2012). Hominin paleoneurology: where are we now? Prog. Brain Res. 195, 255-272. doi: 10.1016/B978-0-444-53860-4.00012-X
-
(2012)
Prog Brain Res
, vol.195
, pp. 255-272
-
-
Falk, D.1
-
35
-
-
84865145427
-
Excitatory neuronal connectivity in the barrel cortex
-
doi: 10.3389/fnana.2012.00024
-
Feldmeyer, D. (2012). Excitatory neuronal connectivity in the barrel cortex. Front. Neuroanat. 6:24. doi: 10.3389/fnana.2012.00024.
-
(2012)
Front. Neuroanat
, vol.6
, pp. 24
-
-
Feldmeyer, D.1
-
36
-
-
0029057882
-
Linked regularities in the development and evolution of mammalian brains
-
doi: 10.1126/science.7777856
-
Finlay, B. L., and Darlington, D. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science 268, 1578-1584. doi: 10.1126/science.7777856.
-
(1995)
Science
, vol.268
, pp. 1578-1584
-
-
Finlay, B.L.1
Darlington, D.B.2
-
37
-
-
0034901709
-
Developmental structure in brain evolution
-
doi: 10.1017/S0140525X01003958
-
Finlay, B. L., Darlington, D. B., and Nicastro, N. (2001). Developmental structure in brain evolution. Behav. Brain Sci. 24, 263-278. doi: 10.1017/S0140525X01003958.
-
(2001)
Behav. Brain Sci
, vol.24
, pp. 263-278
-
-
Finlay, B.L.1
Darlington, D.B.2
Nicastro, N.3
-
38
-
-
0020424189
-
Comparison of brain structure volumes in Insectivora and Primates
-
Frahm, H. D., Stephan, H., and Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates. Part I. Neocortex. J. Hirnforsch. 23, 375-389.
-
(1982)
Neocortex. J. Hirnforsch
, vol.23
, pp. 375-389
-
-
Frahm, H.D.1
Stephan, H.2
Stephan, M.3
-
39
-
-
84921425195
-
Trends and properties of human cerebral cortex: Correlations with cortical myelin content
-
doi: 10.1016/j.neuroimage.2013.03.060. [Epub ahead of print]
-
Glasser, M. F., Goyal, M. S., Preuss, T. M., Raichle, M. E., and Van Essen, D. C. (2013). Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage. doi: 10.1016/j.neuroimage.2013.03.060. [Epub ahead of print].
-
(2013)
Neuroimage
-
-
Glasser, M.F.1
Goyal, M.S.2
Preuss, T.M.3
Raichle, M.E.4
van Essen, D.C.5
-
40
-
-
0038298497
-
Scaling laws in the mammalian neocortex: Does form provide clues to function
-
doi: 10.1023/A:1024178127195
-
Harrison, K. H., Hof, P. R., and Wang, S. S.-H. (2002). Scaling laws in the mammalian neocortex: does form provide clues to function? J. Neurocytol. 31, 289-298. doi: 10.1023/A:1024178127195.
-
(2002)
J. Neurocytol
, vol.31
, pp. 289-298
-
-
Harrison, K.H.1
Hof, P.R.2
Wang, S.S.-H.3
-
41
-
-
84890924627
-
The human brain in numbers: A linearly scaled-up primate brain
-
doi: 10.3389/neuro.09.031.2009
-
Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3:31. doi: 10.3389/neuro.09.031.2009.
-
(2009)
Front. Hum. Neurosci
, vol.3
, pp. 31
-
-
Herculano-Houzel, S.1
-
42
-
-
84855487575
-
Neuronal scaling rules for primate brains: The primate advantage
-
doi: 10.1016/B978-0-444-53860- 4.00015-5
-
Herculano-Houzel, S. (2012). Neuronal scaling rules for primate brains: the primate advantage. Prog. Brain Res. 195, 325-340. doi: 10.1016/B978-0-444-53860- 4.00015-5.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 325-340
-
-
Herculano-Houzel, S.1
-
43
-
-
50449103288
-
The basic nonuniformity of the cerebral cortex
-
doi: 10.1073/pnas.0805417105
-
Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., and Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 105, 12593-12598. doi: 10.1073/pnas.0805417105.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A
, vol.105
, pp. 12593-12598
-
-
Herculano-Houzel, S.1
Collins, C.E.2
Wong, P.3
Kaas, J.H.4
Lent, R.5
-
44
-
-
78650505566
-
Connectivity-driven white matter scaling and folding in primate cerebral cortex
-
doi: 10.1073/pnas.1012590107
-
Herculano-Houzel, S., Mota, B., Wong, P., and Kaas, J. H. (2010). Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 107, 19008-19013. doi: 10.1073/pnas.1012590107.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A
, vol.107
, pp. 19008-19013
-
-
Herculano-Houzel, S.1
Mota, B.2
Wong, P.3
Kaas, J.H.4
-
45
-
-
0021612051
-
On the presumed coevolution of brain size and longevity in hominids
-
doi: 10.1016/S0047-2484 (84)80052-4
-
Hofman, M. A. (1984). On the presumed coevolution of brain size and longevity in hominids. J. Hum. Evol. 13, 371-376. doi: 10.1016/S0047-2484 (84)80052-4.
-
(1984)
J. Hum. Evol
, vol.13
, pp. 371-376
-
-
Hofman, M.A.1
-
46
-
-
0022189523
-
Size and shape of the cerebral cortex in mammals. Part I. The cortical surface
-
doi: 10.1159/000118718
-
Hofman, M. A. (1985a). Size and shape of the cerebral cortex in mammals. Part I. The cortical surface. Brain Behav. Evol. 27, 28-40. doi: 10.1159/000118718.
-
(1985)
Brain Behav. Evol
, vol.27
, pp. 28-40
-
-
Hofman, M.A.1
-
47
-
-
0022002080
-
Neuronal correlates of corticalization in mammals: A theory
-
doi: 10.1016/S0022-5193(85)80117-X
-
Hofman, M. A. (1985b). Neuronal correlates of corticalization in mammals: a theory. J. Theor. Biol. 112, 77-95. doi: 10.1016/S0022-5193(85)80117-X
-
(1985)
J. Theor. Biol
, vol.112
, pp. 77-95
-
-
Hofman, M.A.1
-
48
-
-
0023689370
-
Size and shape of the cerebral cortex in mammals. Part II. The corticalvolume
-
doi: 10.1159/000116529
-
Hofman, M. A. (1988). Size and shape of the cerebral cortex in mammals. Part II. The corticalvolume. Brain Behav. Evol. 32, 17-26. doi: 10.1159/000116529.
-
(1988)
Brain Behav. Evol
, vol.32
, pp. 17-26
-
-
Hofman, M.A.1
-
49
-
-
0024568798
-
On the evolution and geometry of the brain in mammals
-
doi: 10.1016/0301-0082(89)90013-0
-
Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Prog. Neurobiol. 32, 137-158. doi: 10.1016/0301-0082(89)90013-0.
-
(1989)
Prog. Neurobiol
, vol.32
, pp. 137-158
-
-
Hofman, M.A.1
-
50
-
-
0025935283
-
The fractal geometryof convoluted brains
-
Hofman, M. A. (1991). The fractal geometryof convoluted brains. J. Hirnforsch. 32, 103-111.
-
(1991)
J. Hirnforsch
, vol.32
, pp. 103-111
-
-
Hofman, M.A.1
-
51
-
-
0027829747
-
Encephalization and the evolution of longevity in mammals
-
doi: 10.1046/j.1420-9101.1993.6020209.x
-
Hofman, M. A. (1993). Encephalization and the evolution of longevity in mammals. J. Evol. Biol. 6, 209-227. doi: 10.1046/j.1420-9101.1993.6020209.x
-
(1993)
J. Evol. Biol
, vol.6
, pp. 209-227
-
-
Hofman, M.A.1
-
53
-
-
0002186027
-
-
in Evolutionary Anatomy of the Primate Cerebral Cortex, eds D. Falk and K. R. Gibson (Cambridge: Cambridge University Press)
-
Hofman, M. A. (2001b). "Brain evolution in hominids: are we at the end of the road, in Evolutionary Anatomy of the Primate Cerebral Cortex, eds D. Falk and K. R. Gibson (Cambridge: Cambridge University Press), 113-127.
-
(2001)
Brain Evolution In Hominids: Are We At the End of the Road
, pp. 113-127
-
-
Hofman, M.A.1
-
54
-
-
18144363688
-
Of brains and minds: A neurobiological treatise on the nature of intelligence
-
Hofman, M. A. (2003). Of brains and minds: a neurobiological treatise on the nature of intelligence. Evol. Cogn. 9, 178-188.
-
(2003)
Evol. Cogn
, vol.9
, pp. 178-188
-
-
Hofman, M.A.1
-
55
-
-
84897076385
-
-
in Integration of Comparative Neuroanatomy and Cognition, eds S. Watanabe and M. A. Hofman (Tokyo: Keio University Press)
-
Hofman, M. A. (2007). "Brain evolution and intelligence in primates, in Integration of Comparative Neuroanatomy and Cognition, eds S. Watanabe and M. A. Hofman (Tokyo: Keio University Press), 33-53.
-
(2007)
Brain Evolution and Intelligence In Primates
, pp. 33-53
-
-
Hofman, M.A.1
-
56
-
-
84855516626
-
Neural networks and cognition: An evolutionary approach
-
Hofman, M. A. (2008). Neural networks and cognition: an evolutionary approach. Jap. J. Cogn. Neurosci. 10, 1-4.
-
(2008)
Jap. J. Cogn. Neurosci
, vol.10
, pp. 1-4
-
-
Hofman, M.A.1
-
57
-
-
84855518083
-
Design principles of the human brain: An evolutionary perspective
-
doi: 10.1016/B978-0-444-53860-4.00018-0
-
Hofman, M. A. (2012). Design principles of the human brain: an evolutionary perspective. Prog. Brain Res. 195, 373-390. doi: 10.1016/B978-0-444-53860-4.00018-0.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 373-390
-
-
Hofman, M.A.1
-
58
-
-
84897098972
-
-
Handbook of Intelligence: Evolutionary Theory, Historical Perspective and Current Concepts, eds S. Goldstein, J. A. Naglieri, and D. Princiotta (Berlin, Springer Verlag). (in press)
-
Hofman, M. A. (2014). "Evolution of the human brain and intelligence: from matter to mind, in Handbook of Intelligence: Evolutionary Theory, Historical Perspective and Current Concepts, eds S. Goldstein, J. A. Naglieri, and D. Princiotta (Berlin, Springer Verlag). (in press).
-
(2014)
Evolution of the Human Brain and Intelligence: From Matter to Mind
-
-
Hofman, M.A.1
-
60
-
-
84904311998
-
The diameter of cortical axons depends both on the area of origin and target
-
doi: 10.1093/cercor/bht070. [Epub ahead of print]
-
Innocenti, G. M., Vercelli, A., and Caminiti, R. (2013). The diameter of cortical axons depends both on the area of origin and target. Cereb. Cortex. doi: 10.1093/cercor/bht070. [Epub ahead of print].
-
(2013)
Cereb. Cortex
-
-
Innocenti, G.M.1
Vercelli, A.2
Caminiti, R.3
-
61
-
-
84897082442
-
-
in Primate Brain Evolution, eds E. Armstrong and D. Falk (New York, NY: Plenum Press)
-
Jerison, H. J. (1982). "Allometry, brain size, cortical surface and convolutedness," in Primate Brain Evolution, eds E. Armstrong and D. Falk (New York, NY: Plenum Press), 77-84.
-
(1982)
Allometry, Brain Size, Cortical Surface and Convolutedness
, pp. 77-84
-
-
Jerison, H.J.1
-
62
-
-
0034434211
-
Why is brain size so important: Design problems and solutions as neocortex gets bigger or smaller
-
doi: 10.1023/A:1010028405318
-
Kaas, J. H. (2000). Why is brain size so important: design problems and solutions as neocortex gets bigger or smaller. Brain Mind 1, 7-23. doi: 10.1023/A:1010028405318.
-
(2000)
Brain Mind
, vol.1
, pp. 7-23
-
-
Kaas, J.H.1
-
63
-
-
40249107624
-
The evolution of the complex sensory and motor systems of the human brain
-
doi: 10.1016/j.brainresbull.2007.10.009
-
Kaas, J. H. (2008). The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull. 75, 384-390. doi: 10.1016/j.brainresbull.2007.10.009.
-
(2008)
Brain Res. Bull
, vol.75
, pp. 384-390
-
-
Kaas, J.H.1
-
64
-
-
84855474615
-
The evolution of neocortex in primates
-
doi: 10.1016/B978-0-444-53860-4.00005-2
-
Kaas, J. H. (2012). The evolution of neocortex in primates. Prog. Brain Res. 195, 91-102. doi: 10.1016/B978-0-444-53860-4.00005-2.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 91-102
-
-
Kaas, J.H.1
-
65
-
-
0344234479
-
How does connectivity between cortical areas depend on brain size? Implications for efficient computation
-
doi: 10.1023/A:1027467911225
-
Karbowski, J. (2003). How does connectivity between cortical areas depend on brain size? Implications for efficient computation. J. Comp. Neurosci. 15, 347-356. doi: 10.1023/A:1027467911225.
-
(2003)
J. Comp. Neurosci
, vol.15
, pp. 347-356
-
-
Karbowski, J.1
-
66
-
-
0038271664
-
Connectivity optimization and the positioning of cortical areas
-
doi: 10.1073/pnas.0932745100
-
Klyachko, V. A., and Stevens, C. F. (2003). Connectivity optimization and the positioning of cortical areas. Proc. Natl. Acad. Sci. U.S.A. 100, 7937-7941. doi: 10.1073/pnas.0932745100.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A
, vol.100
, pp. 7937-7941
-
-
Klyachko, V.A.1
Stevens, C.F.2
-
67
-
-
45049088576
-
The magnificent compromise: Cortical field evolution in mammals
-
doi: 10.1016/j.neuron.2007.10.002
-
Krubitzer, L. (2007). The magnificent compromise: cortical field evolution in mammals. Neuron 56, 201-208. doi: 10.1016/j.neuron.2007.10.002.
-
(2007)
Neuron
, vol.56
, pp. 201-208
-
-
Krubitzer, L.1
-
68
-
-
84886442853
-
Cortical plasticity within and across lifetimes: How can development inform us about phenotypic transformations?
-
doi: 10.3389/fnhum.2013.00620
-
Krubitzer, L., and Dooley, J. C. (2013). Cortical plasticity within and across lifetimes: how can development inform us about phenotypic transformations? Front. Hum. Neurosci. 7:620. doi: 10.3389/fnhum.2013.00620.
-
(2013)
Front. Hum. Neurosci
, vol.7
, pp. 620
-
-
Krubitzer, L.1
Dooley, J.C.2
-
69
-
-
0141645490
-
Communication in neural networks
-
doi: 10.1126/science.1089662
-
Laughlin, S. B., and Sejnowski, T. J. (2003). Communication in neural networks. Science 301, 1870-1874. doi: 10.1126/science.1089662.
-
(2003)
Science
, vol.301
, pp. 1870-1874
-
-
Laughlin, S.B.1
Sejnowski, T.J.2
-
70
-
-
84855500170
-
Primate encephalization
-
doi: 10.1016/B978-0-444-53860-4.00019-2
-
Lefebvre, L. (2012). Primate encephalization. Prog. Brain Res. 195, 393-412. doi: 10.1016/B978-0-444-53860-4.00019-2.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 393-412
-
-
Lefebvre, L.1
-
71
-
-
1842685633
-
Brain growth, life history, and cognition in primate and human evolution
-
doi: 10.1002/ajp.20012
-
Leigh, S. R. (2004). Brain growth, life history, and cognition in primate and human evolution. Am. J. Primatol. 62, 139-164. doi: 10.1002/ajp.20012.
-
(2004)
Am. J. Primatol
, vol.62
, pp. 139-164
-
-
Leigh, S.R.1
-
72
-
-
84855289400
-
How many neurons do you have? Some dogmas of quantitative neuroscience under revision
-
doi: 10.1111/j.1460-9568.2011. 07923.x
-
Lent, R., Azevedo, F. A. C., Andrade-Moraes, C. H., and Pinto, A. V. O. (2012). How many neurons do you have? Some dogmas of quantitative neuroscience under revision. Eur. J. Neurosci. 35, 1-9. doi: 10.1111/j.1460-9568.2011. 07923.x
-
(2012)
Eur. J. Neurosci
, vol.35
, pp. 1-9
-
-
Lent, R.1
Azevedo, F.A.C.2
Andrade-Moraes, C.H.3
Pinto, A.V.O.4
-
73
-
-
84880331553
-
Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography
-
doi: 10.1016/j.neuroimage.2013.04.024
-
Li, L., Hu, X., Preuss, T. M., Glasser, M. F., Damen, F. W., Qiu, Y., et al. (2013). Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 80, 462-474. doi: 10.1016/j.neuroimage.2013.04.024.
-
(2013)
Neuroimage
, vol.80
, pp. 462-474
-
-
Li, L.1
Hu, X.2
Preuss, T.M.3
Glasser, M.F.4
Damen, F.W.5
Qiu, Y.6
-
74
-
-
84855494016
-
The missing link: Evolution of the primate cerebellu
-
doi: 10.1016/B978-0-444-53860-4.00008-8
-
MacLeod, C. (2012). The missing link: evolution of the primate cerebellu. Prog. BrainRes. 195, 165-187. doi: 10.1016/B978-0-444-53860-4.00008-8.
-
(2012)
Prog. BrainRes
, vol.195
, pp. 165-187
-
-
Macleod, C.1
-
75
-
-
0034841508
-
The evolution of intelligence: Adaptive specializations versus general process
-
doi: 10.1017/S146479310100570X
-
Macphail, E. M., and Bolhuis, J. J. (2001). The evolution of intelligence: adaptive specializations versus general process. Biol. Rev. 76, 341-364. doi: 10.1017/S146479310100570X
-
(2001)
Biol. Rev
, vol.76
, pp. 341-364
-
-
Macphail, E.M.1
Bolhuis, J.J.2
-
77
-
-
84856782618
-
How the cortex gets its folds: An inside-out, connectivity-driven model for the scaling of mammalian cortical folding
-
doi: 10.3389/fnana.2012.00003
-
Mota, B., and Herculano-Houzel, S. (2012). How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front. Neuroanat. 6:3. doi: 10.3389/fnana.2012.00003.
-
(2012)
Front. Neuroanat
, vol.6
, pp. 3
-
-
Mota, B.1
Herculano-Houzel, S.2
-
78
-
-
0031002495
-
The columnar organization of the brain
-
doi: 10.1093/brain/120.4.701
-
Mountcastle, V. B. (1997). The columnar organization of the brain. Brain 120, 701-722. doi: 10.1093/brain/120.4.701.
-
(1997)
Brain
, vol.120
, pp. 701-722
-
-
Mountcastle, V.B.1
-
79
-
-
0027994421
-
The neocortex: An overview of its evolutionary development, structural organization and synaptology
-
doi: 10.1007/BF00187291
-
Nieuwenhuys, R. (1994). The neocortex: an overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. 190, 307-337. doi: 10.1007/BF00187291.
-
(1994)
Anat. Embryol
, vol.190
, pp. 307-337
-
-
Nieuwenhuys, R.1
-
80
-
-
0029100444
-
The emergence and evolution of mammalian neocortex
-
doi: 10.1016/0166-2236(95)93932-N
-
Northcutt, R. G., and Kaas, J. H. (1995). The emergence and evolution of mammalian neocortex. Trends Neurosci. 18, 373-379. doi: 10.1016/0166-2236(95)93932-N
-
(1995)
Trends Neurosci
, vol.18
, pp. 373-379
-
-
Northcutt, R.G.1
Kaas, J.H.2
-
81
-
-
79955101961
-
A synaptic organizing principle for cortical neuronal groups
-
doi: 10.1073/pnas.1016051108
-
Perin, R., Berger, T. K., and Markram, H. (2011). A synaptic organizing principle for cortical neuronal groups. Proc. Natl. Acad. Sci. U.S.A. 108, 5419-5424. doi: 10.1073/pnas.1016051108.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A
, vol.108
, pp. 5419-5424
-
-
Perin, R.1
Berger, T.K.2
Markram, H.3
-
82
-
-
84873890903
-
Computing the size and number of neuronal clusters in local circuits
-
doi: 10.3389/fnana.2013.00001
-
Perin, R., Telefont, M., and Markram, H. (2013). Computing the size and number of neuronal clusters in local circuits. Front. Neuroanat. 7:1. doi: 10.3389/fnana.2013.00001.
-
(2013)
Front. Neuroanat
, vol.7
, pp. 1
-
-
Perin, R.1
Telefont, M.2
Markram, H.3
-
83
-
-
79956225758
-
The human brain: Rewired and running hot
-
doi: 10.1111/j.1749-6632.2011.06001.x
-
Preuss, T. M. (2011). The human brain: rewired and running hot. Ann. N.Y. Acad. Sci. 1125(Suppl. 1), E183-E191. doi: 10.1111/j.1749-6632.2011.06001.x
-
(2011)
Ann. N.Y. Acad. Sci
, vol.1125
, Issue.SUPPL. 1
-
-
Preuss, T.M.1
-
84
-
-
0021165764
-
Folding of the cerebral cortex in mammals: A scaling model
-
doi: 10.1159/ 000121313
-
Prothero, J. W., and Sundsten, J. W. (1984). Folding of the cerebral cortex in mammals: a scaling model. Brain Behav. Evol. 24, 152-167. doi: 10.1159/ 000121313.
-
(1984)
Brain Behav. Evol
, vol.24
, pp. 152-167
-
-
Prothero, J.W.1
Sundsten, J.W.2
-
85
-
-
79952321273
-
A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex
-
doi: 10.3389/neuro.05.003
-
Raghanti, M. A., Spocter, M. A., Butti, C., Hof, P. R., and Sherwood, C. C. (2010). A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the neocortex. Front. Neuronanat. 4:3. doi: 10.3389/neuro.05.003.
-
(2010)
Front. Neuronanat
, vol.4
, pp. 3
-
-
Raghanti, M.A.1
Spocter, M.A.2
Butti, C.3
Hof, P.R.4
Sherwood, C.C.5
-
86
-
-
0029132983
-
A small step for the cell, a giant leap for mankind: A hypothesis of neocortical expansion during evolution
-
doi: 10.1016/0166-2236(95)93934-P
-
Rakic, P. (1995). A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383-388. doi: 10.1016/0166-2236(95)93934-P
-
(1995)
Trends Neurosci
, vol.18
, pp. 383-388
-
-
Rakic, P.1
-
87
-
-
35048888932
-
The radial edifice of cortical architecture: From neuronal silhouettes to genetic engineering
-
doi: 10.1016/j.brainresrev.2007.02.010
-
Rakic, P. (2007). The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Res. Rev. 55, 204-219. doi: 10.1016/j.brainresrev.2007.02.010.
-
(2007)
Brain Res. Rev
, vol.55
, pp. 204-219
-
-
Rakic, P.1
-
88
-
-
70349274112
-
Evolution of the neocortex: A perspective from developmental biology
-
doi: 10.1038/nrn2719
-
Rakic, P. (2009). Evolution of the neocortex: a perspective from developmental biology. Nature Rev. Neurosci. 10, 724-735. doi: 10.1038/nrn2719.
-
(2009)
Nature Rev. Neurosci
, vol.10
, pp. 724-735
-
-
Rakic, P.1
-
89
-
-
84885057930
-
The human cerebal cortex is neither on nor many: Neuronal distribution reveals two quantitative different zones in the gray matter, three in the white matter, and explains local variations in cortical folding
-
doi: 10.3389/fnana.2013.00028
-
Ribeiro, P. F. M., Ventura-Antunes, L., Gabi, M., Mota, B., Grinberg, L. T., Farfel, J. M., et al. (2013). The human cerebal cortex is neither on nor many: neuronal distribution reveals two quantitative different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front. Neuroanat. 7:28. doi: 10.3389/fnana.2013.00028.
-
(2013)
Front. Neuroanat
, vol.7
, pp. 28
-
-
Ribeiro, P.F.M.1
Ventura-Antunes, L.2
Gabi, M.3
Mota, B.4
Grinberg, L.T.5
Farfel, J.M.6
-
90
-
-
84890427340
-
Comparative primate neuroimaging: Insights into human brain evolution
-
doi: 10.1016/j.tics.2013.09.013
-
Rilling, J. K. (2014). Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn. Sci. 18, 45-55. doi: 10.1016/j.tics.2013.09.013.
-
(2014)
Trends Cogn. Sci
, vol.18
, pp. 45-55
-
-
Rilling, J.K.1
-
91
-
-
0026049138
-
Neuronal interconnection as a function of brain size. Brain Behav
-
doi: 10.1159/000114375
-
Ringo, J. L. (1991). Neuronal interconnection as a function of brain size. Brain Behav. Evol. 38, 1-6. doi: 10.1159/000114375.
-
(1991)
Evol
, vol.38
, pp. 1-6
-
-
Ringo, J.L.1
-
92
-
-
12044252386
-
Time is of the essence: A conjecture that hemispheric specialization arises from interhemi-spheric conduction delay
-
doi: 10.1093/cercor/4.4.331
-
Ringo, J. L., Doty, R. W., Demeter, S., and Simard, P. Y. (1994). Time is of the essence: a conjecture that hemispheric specialization arises from interhemi-spheric conduction delay. Cereb. Cortex 4, 331-343. doi: 10.1093/cercor/4.4.331.
-
(1994)
Cereb. Cortex
, vol.4
, pp. 331-343
-
-
Ringo, J.L.1
Doty, R.W.2
Demeter, S.3
Simard, P.Y.4
-
93
-
-
45849117649
-
Hominin life history: Reconstruction and evolution
-
doi: 10.1111/j.1469-7580.2008.00867.x
-
Robson, S. L., and Wood, B. (2008). Hominin life history: reconstruction and evolution. J.Anat. 212, 394-425. doi: 10.1111/j.1469-7580.2008.00867.x
-
(2008)
J.Anat
, vol.212
, pp. 394-425
-
-
Robson, S.L.1
Wood, B.2
-
94
-
-
79958117383
-
Five points on columns
-
doi: 10.3389/fnana.2010.00022
-
Rockland, K. S. (2010). Five points on columns. Front. Neuroanat. 4:22. doi: 10.3389/fnana.2010.00022.
-
(2010)
Front. Neuroanat
, vol.4
, pp. 22
-
-
Rockland, K.S.1
-
95
-
-
84855482127
-
Evolution of the brain and intelligence in primates
-
doi: 10.1016/B978-0-444-53860-4.00 020-9
-
Roth, G., and Dicke, U. (2012). Evolution of the brain and intelligence in primates. Prog. Brain Res. 195, 413-430. doi: 10.1016/B978-0-444-53860-4.00 020-9.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 413-430
-
-
Roth, G.1
Dicke, U.2
-
96
-
-
84872195054
-
Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain
-
doi: 10.1098/rspb.2012.2398
-
Sakai, T., Matsui, M., Mikami, A., Malkova, L., Hamada, Y., Tomonaga, M., et al. (2013). Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proc. R. Soc. B Biol. Sci. 280:20122398. doi: 10.1098/rspb.2012.2398.
-
(2013)
Proc. R. Soc. B Biol. Sci
, vol.280
, pp. 20122398
-
-
Sakai, T.1
Matsui, M.2
Mikami, A.3
Malkova, L.4
Hamada, Y.5
Tomonaga, M.6
-
97
-
-
0028909231
-
Analysis of connectivity in the cat cerebral cortex
-
Scannell, J. W., Blakemore, C. J., and Young, M. P. (1995). Analysis of connectivity in the cat cerebral cortex. J. Neurosci. 15, 1463-1483.
-
(1995)
J. Neurosci
, vol.15
, pp. 1463-1483
-
-
Scannell, J.W.1
Blakemore, C.J.2
Young, M.P.3
-
98
-
-
77957021450
-
The role of the cerebellum in cognition and emotion: Personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy
-
doi: 10.1007/s11065-010-9142-x
-
Schmahmann, J. D. (2010). The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol. Rev. 20,236-260. doi: 10.1007/s11065-010-9142-x
-
(2010)
Neuropsychol. Rev
, vol.20
, pp. 236-260
-
-
Schmahmann, J.D.1
-
99
-
-
33751063769
-
Evolution of the size and functional areas of the human brain
-
doi: 10.1146/annurev.anthro.35.081705.123210
-
Schoenemann, P. T. (2006). Evolution of the size and functional areas of the human brain. Ann. Rev. Anthropol. 35, 379-406. doi: 10.1146/annurev.anthro.35.081705.123210.
-
(2006)
Ann. Rev. Anthropol
, vol.35
, pp. 379-406
-
-
Schoenemann, P.T.1
-
100
-
-
84887065750
-
-
in A Companion to Paleoanthropology, ed D. R. Begun (Chichester: Wiley-Blackwell), doi: 10.1002/9781118332344.ch8
-
Schoenemann, P. T. (2013). Hominid brain evolution, in A Companion to Paleoanthropology, ed D. R. Begun (Chichester: Wiley-Blackwell), 136-164. doi: 10.1002/9781118332344.ch8.
-
(2013)
Hominid Brain Evolution
, pp. 136-164
-
-
Schoenemann, P.T.1
-
101
-
-
13244281707
-
Prefrontal white matter volume is disproportionately larger in humans than in other primates
-
doi: 10.1038/nn1394
-
Schoenemann, P. T., Sheehan, M. J., and Glotzer, I. D. (2005). Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8, 242-252. doi: 10.1038/nn1394.
-
(2005)
Nat. Neurosci
, vol.8
, pp. 242-252
-
-
Schoenemann, P.T.1
Sheehan, M.J.2
Glotzer, I.D.3
-
102
-
-
0034127035
-
The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging
-
doi: 10.1006/jhev.1999.0381
-
Semendeferi, K., and Damasio, H. (2000). The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J. Hum. Evol. 38, 317-332. doi: 10.1006/jhev.1999.0381.
-
(2000)
J. Hum. Evol
, vol.38
, pp. 317-332
-
-
Semendeferi, K.1
Damasio, H.2
-
103
-
-
0036177203
-
Humans and great apes share a large frontal cortex
-
doi: 10.1038/ nn814
-
Semendeferi, K., Lu, A., Schenker, N., and Damasio, H. (2002). Humans and great apes share a large frontal cortex. Nat. Neurosci. 5, 272-276. doi: 10.1038/ nn814.
-
(2002)
Nat. Neurosci
, vol.5
, pp. 272-276
-
-
Semendeferi, K.1
Lu, A.2
Schenker, N.3
Damasio, H.4
-
104
-
-
79959480341
-
Spatial organization of neurons in the frontal pole sets humans apart from great apes
-
doi: 10.1093/cercor/bhq191
-
Semendeferi, K., Teffer, K., Buxhoeveden, D. P., Park, M. S., Bludau, S., Amunts, K., et al. (2011). Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cereb. Cortex 21, 1485-1497. doi: 10.1093/cercor/bhq191.
-
(2011)
Cereb. Cortex
, vol.21
, pp. 1485-1497
-
-
Semendeferi, K.1
Teffer, K.2
Buxhoeveden, D.P.3
Park, M.S.4
Bludau, S.5
Amunts, K.6
-
105
-
-
84855481801
-
Human brain evolution writ large and small
-
doi: 10.1016/B978-0-444-53860-4.00011-8
-
Sherwood, C. C., Bauernfeind, A. L., Bianchi, S., Raghanti, M. A., and Hof, P. R. (2012). Human brain evolution writ large and small. Prog. Brain Res. 195, 237-254. doi: 10.1016/B978-0-444-53860-4.00011-8.
-
(2012)
Prog. Brain Res
, vol.195
, pp. 237-254
-
-
Sherwood, C.C.1
Bauernfeind, A.L.2
Bianchi, S.3
Raghanti, M.A.4
Hof, P.R.5
-
106
-
-
84882839458
-
What's the fuss over human frontal lobe evolution?
-
doi: 10.1016/j.tics.2013.06.008
-
Sherwood, C. C., and Smaers, J. (2013). What's the fuss over human frontal lobe evolution? Trends Cogn. Sci. 17, 432-433. doi: 10.1016/j.tics.2013.06.008.
-
(2013)
Trends Cogn. Sci
, vol.17
, pp. 432-433
-
-
Sherwood, C.C.1
Smaers, J.2
-
107
-
-
77949385881
-
Frontal white matter volume in anthropoid primates
-
doi: 10.1371/jour-nal.pone.0009123
-
Smaers, J. B., Schleicher, A., Zilles, K., and Vinicius, L. (2010). Frontal white matter volume in anthropoid primates. PLoS ONE 5:e9123. doi: 10.1371/jour-nal.pone.0009123.
-
(2010)
PLoS ONE
, vol.5
-
-
Smaers, J.B.1
Schleicher, A.2
Zilles, K.3
Vinicius, L.4
-
108
-
-
4444318641
-
Organization, development and function of complex brain networks
-
doi: 10.1016/j.tics.2004.07.008
-
Sporns, O., Chilavo, D. R., Kaiser, M., and Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends Cogn. Sci. 8, 418-425. doi: 10.1016/j.tics.2004.07.008.
-
(2004)
Trends Cogn. Sci
, vol.8
, pp. 418-425
-
-
Sporns, O.1
Chilavo, D.R.2
Kaiser, M.3
Hilgetag, C.C.4
-
109
-
-
38349140387
-
Identification and classification of hubs in brain networks
-
doi: 10.1371/journal.pone.0001049
-
Sporns, O., Honey, C. J., and Kotter, R. (2007). Identification and classification of hubs in brain networks. PLoS ONE 2:e1049. doi: 10.1371/journal.pone.0001049.
-
(2007)
PLoS ONE
, vol.2
-
-
Sporns, O.1
Honey, C.J.2
Kotter, R.3
-
110
-
-
0001783682
-
New and revised data on volumes of brain structures in insectivores and primates
-
doi: 10.1159/000155963
-
Stephan, H., Frahm, H. D., and Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1-29. doi: 10.1159/000155963.
-
(1981)
Folia Primatol
, vol.35
, pp. 1-29
-
-
Stephan, H.1
Frahm, H.D.2
Baron, G.3
-
112
-
-
84855485624
-
Human prefrontal cortex: Evolution, development, and pathology
-
doi: 10.1016/B978-0-444-53860-4.00009-X
-
Teffer, K., and Semendeferi, K. (2012). Human prefrontal cortex: evolution, development, and pathology. Progr. Brain Res. 195, 191-218. doi: 10.1016/B978-0-444-53860-4.00009-X
-
(2012)
Progr. Brain Res
, vol.195
, pp. 191-218
-
-
Teffer, K.1
Semendeferi, K.2
-
114
-
-
80155148207
-
Rich-club organization of the human connectome
-
doi: 10.1523/JNEUROSCI.3539- 11.2011
-
Van den Heuvel, M. P., and Sporns, O. (2011). Rich-club organization of the human connectome. J. Neurosci. 31, 15775-15786. doi: 10.1523/JNEUROSCI.3539- 11.2011.
-
(2011)
J. Neurosci
, vol.31
, pp. 15775-15786
-
-
van den Heuvel, M.P.1
Sporns, O.2
-
115
-
-
0031037505
-
A tension-based theory of morphogenesis and compact wiring in the central nervous system
-
doi: 10.1038/385313a0
-
Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385, 313-318. doi: 10.1038/385313a0.
-
(1997)
Nature
, vol.385
, pp. 313-318
-
-
van Essen, D.C.1
-
116
-
-
36348988250
-
Surface-based and probabilistic atlases of primate cerebral cortex
-
doi: 10.1016/j.neuron.2007.10.015
-
Van Essen, D. C., and Dierker, D. L. (2007). Surface-based and probabilistic atlases of primate cerebral cortex. Neuron 56, 209-225. doi: 10.1016/j.neuron.2007.10.015.
-
(2007)
Neuron
, vol.56
, pp. 209-225
-
-
van Essen, D.C.1
Dierker, D.L.2
-
117
-
-
43049164376
-
Functional trade-offs in white matter axonal scaling
-
doi: 10.1523/JNEUROSCI.5559-05.2008
-
Wang, S. S.-H., Shultz, J. R., Burish, M. J., Harrison, K. H., Hof, P. R., Towns, L. C., et al. (2008). Functional trade-offs in white matter axonal scaling. J. Neurosci. 28, 4047-4056. doi: 10.1523/JNEUROSCI.5559-05.2008.
-
(2008)
J. Neurosci
, vol.28
, pp. 4047-4056
-
-
Wang, S.S.-H.1
Shultz, J.R.2
Burish, M.J.3
Harrison, K.H.4
Hof, P.R.5
Towns, L.C.6
-
118
-
-
77955629291
-
Neurophysiological and computational principles of cortical rhythms in cognition
-
doi: 10.1152/phys-rev.00035.2008
-
Wang, X.-J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90, 1195-1268. doi: 10.1152/phys-rev.00035.2008.
-
(2010)
Physiol. Rev
, vol.90
, pp. 1195-1268
-
-
Wang, X.-J.1
-
119
-
-
0032482432
-
Collective dynamics of 'small-world' networks
-
doi: 10.1038/30918
-
Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature 393, 440-442. doi: 10.1038/30918.
-
(1998)
Nature
, vol.393
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
120
-
-
84859136014
-
The geometric structure of the brain fiber pathway
-
doi: 10.1126/science.1215280
-
Wedeen, V. J., Rosene, D. L., Wang, R., Dai, G., Mortazavi, F., Hagmann, P., et al. (2012). The geometric structure of the brain fiber pathway. Science 335, 1628-1638. doi: 10.1126/science.1215280.
-
(2012)
Science
, vol.335
, pp. 1628-1638
-
-
Wedeen, V.J.1
Rosene, D.L.2
Wang, R.3
Dai, G.4
Mortazavi, F.5
Hagmann, P.6
-
121
-
-
55449115440
-
Segregation of the brain into gray and white matter: A design minimizing conduction delays
-
doi: 10.1371/journal.pcbi.0010078
-
Wen, Q., and Chklovskii, D. B. (2005). Segregation of the brain into gray and white matter: a design minimizing conduction delays. PLoS Comp. Biol. 1:e78. doi: 10.1371/journal.pcbi.0010078.
-
(2005)
PLoS Comp. Biol
, vol.1
-
-
Wen, Q.1
Chklovskii, D.B.2
-
122
-
-
84885333469
-
Reconsidering the evolution of brain, cognition, and behavior in birds and mammals
-
doi: 10.3389/fpsyg.2013.00396
-
Willemet, R. (2013). Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front. Psychol. 4:396. doi: 10.3389/fpsyg.2013.00396.
-
(2013)
Front. Psychol
, vol.4
, pp. 396
-
-
Willemet, R.1
-
123
-
-
0027273888
-
The organization of neural systems in the primate cerebral cortex
-
doi: 10.1098/rspb.1993.0040
-
Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proc. R. Soc. London B Biol. Sci. 252, 13-18. doi: 10.1098/rspb.1993.0040.
-
(1993)
Proc. R. Soc. London B Biol. Sci
, vol.252
, pp. 13-18
-
-
Young, M.P.1
-
124
-
-
0034625150
-
A universal scaling law between gray matter and white matter of cerebral cortex
-
doi: 10.1073/pnas.090504197
-
Zhang, K., and Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proc. Natl. Acad. Sci. U.S.A. 97, 5621-5626. doi: 10.1073/pnas.090504197
-
(2000)
Proc. Natl. Acad. Sci. U.S.A
, vol.97
, pp. 5621-5626
-
-
Zhang, K.1
Sejnowski, T.J.2
|