메뉴 건너뛰기




Volumn 179, Issue 7, 2016, Pages 1143-1154

Effect of Evolutionary Adaption on Xylosidase Activity in Thermotolerant Yeast Isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3

Author keywords

Candida tropicalis; Kluyveromyces marxianus; pNPX; Xylose transport; Yeast; Xylosidase

Indexed keywords

CANDIDA; CELLS; CYTOLOGY; YEAST;

EID: 84961782213     PISSN: 02732289     EISSN: 15590291     Source Type: Journal    
DOI: 10.1007/s12010-016-2055-2     Document Type: Article
Times cited : (13)

References (43)
  • 1
    • 77957294970 scopus 로고    scopus 로고
    • Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs
    • COI: 1:CAS:528:DC%2BC3cXht1SrtbjM
    • Behera, S., Mohanty, R. C., & Ray, R. C. (2011). Ethanol production from mahula (Madhuca latifolia L.) flowers with immobilized cells of Saccharomyces cerevisiae in Luffa cylindrica L. sponge discs. Appled Energy, 88, 212–215.
    • (2011) Appled Energy , vol.88 , pp. 212-215
    • Behera, S.1    Mohanty, R.C.2    Ray, R.C.3
  • 2
    • 84937203008 scopus 로고    scopus 로고
    • Bioprospecting thermophillic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective
    • COI: 1:CAS:528:DC%2BC2MXhtF2isL3L
    • Arora, R., Behera, S., & Kumar, S. (2015). Bioprospecting thermophillic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renewable and Sustainable Energy Reviews, 51, 699–717.
    • (2015) Renewable and Sustainable Energy Reviews , vol.51 , pp. 699-717
    • Arora, R.1    Behera, S.2    Kumar, S.3
  • 3
    • 84929840370 scopus 로고    scopus 로고
    • Batch ethanol production from cassava (Manihot esculenta Crantz.) flour using Saccharomyces cerevisiae cells immobilized in calcium alginate
    • COI: 1:CAS:528:DC%2BC2cXoslCnsL8%3D
    • Behera, S., Mohanty, R. C., & Ray, R. C. (2015). Batch ethanol production from cassava (Manihot esculenta Crantz.) flour using Saccharomyces cerevisiae cells immobilized in calcium alginate. Annals of Microbiology, 65, 779–783.
    • (2015) Annals of Microbiology , vol.65 , pp. 779-783
    • Behera, S.1    Mohanty, R.C.2    Ray, R.C.3
  • 4
    • 64749113494 scopus 로고    scopus 로고
    • Recent advances in production of bioethanol from lignocellulosic biomass
    • COI: 1:CAS:528:DC%2BD1MXkslCmtr4%3D
    • Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Recent advances in production of bioethanol from lignocellulosic biomass. Chemical Engineering and Technology, 32, 517–526.
    • (2009) Chemical Engineering and Technology , vol.32 , pp. 517-526
    • Kumar, S.1    Singh, S.P.2    Mishra, I.M.3    Adhikari, D.K.4
  • 5
    • 82955213627 scopus 로고    scopus 로고
    • Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453
    • COI: 1:CAS:528:DC%2BC3cXhtFOqsrjO
    • Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2010). Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature using Kluyveromyces sp. IIPE453. Biofuels, 1, 697–704.
    • (2010) Biofuels , vol.1 , pp. 697-704
    • Kumar, S.1    Singh, S.P.2    Mishra, I.M.3    Adhikari, D.K.4
  • 6
    • 84946745099 scopus 로고    scopus 로고
    • Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3
    • Sharma NR, Thakur RC, Sharma M, Parihar L, Kumar G, (eds), Elsevier, New Delhi
    • Arora, R., Behera, S., Sharma, N. K., Singh, R., Yadav, Y. K., & Kumar, S. (2014). Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. In N. R. Sharma, R. C. Thakur, M. Sharma, L. Parihar, & G. Kumar (Eds.), Exploring & basic sciences for next generation frontiers (pp. 143–146). New Delhi: Elsevier.
    • (2014) Exploring & basic sciences for next generation frontiers , pp. 143-146
    • Arora, R.1    Behera, S.2    Sharma, N.K.3    Singh, R.4    Yadav, Y.K.5    Kumar, S.6
  • 7
    • 84899890200 scopus 로고    scopus 로고
    • Importance of chemical pretreatment for bioconversion of lignocellulosic biomass
    • COI: 1:CAS:528:DC%2BC2cXhtVCjtrjI
    • Behera, S., Arora, R., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.
    • (2014) Renewable and Sustainable Energy Reviews , vol.36 , pp. 91-106
    • Behera, S.1    Arora, R.2    Nandhagopal, N.3    Kumar, S.4
  • 8
    • 84946721531 scopus 로고    scopus 로고
    • Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast
    • Kumar S, Sarma AK, Tyagi SK, Yadav YK, (eds), 3, Kapurthala, SSS-NIRE
    • Behera, S., Arora, R., Sharma, N. K., & Kumar, S. (2014). Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast. In S. Kumar, A. K. Sarma, S. K. Tyagi, & Y. K. Yadav (Eds.), Recent advances in bio-energy research (Vol. 3, pp. 175–182). SSS-NIRE: Kapurthala.
    • (2014) Recent advances in bio-energy research , pp. 175-182
    • Behera, S.1    Arora, R.2    Sharma, N.K.3    Kumar, S.4
  • 9
    • 84940984332 scopus 로고    scopus 로고
    • Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast
    • COI: 1:CAS:528:DC%2BC2cXht1Kks7bJ
    • Kumar, S., Dheeran, P., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2015). Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 38, 39–47.
    • (2015) Bioprocess and Biosystems Engineering , vol.38 , pp. 39-47
    • Kumar, S.1    Dheeran, P.2    Singh, S.P.3    Mishra, I.M.4    Adhikari, D.K.5
  • 10
    • 0942288120 scopus 로고    scopus 로고
    • Bacteria engineered for fuel ethanol production: current status
    • COI: 1:CAS:528:DC%2BD3sXpsFOnt7w%3D
    • Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: current status. Appled Microbiology and Biotechnology, 63, 258–266.
    • (2003) Appled Microbiology and Biotechnology , vol.63 , pp. 258-266
    • Dien, B.S.1    Cotta, M.A.2    Jeffries, T.W.3
  • 11
    • 33744914986 scopus 로고    scopus 로고
    • Engineering yeasts for xylose metabolism
    • COI: 1:CAS:528:DC%2BD28Xls1aktL8%3D
    • Jeffries, T. W. (2006). Engineering yeasts for xylose metabolism. Current Opinion in Biotechnology, 17, 320–326.
    • (2006) Current Opinion in Biotechnology , vol.17 , pp. 320-326
    • Jeffries, T.W.1
  • 12
    • 33749828025 scopus 로고    scopus 로고
    • Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharides assimilating yeast strain
    • COI: 1:CAS:528:DC%2BD28XhtVKrtLvJ
    • Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharides assimilating yeast strain. Appled Microbiology and Biotechnology, 72, 1136–1143.
    • (2006) Appled Microbiology and Biotechnology , vol.72 , pp. 1136-1143
    • Katahira, S.1    Mizuike, A.2    Fukuda, H.3    Kondo, A.4
  • 13
    • 71349085164 scopus 로고    scopus 로고
    • Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453
    • COI: 1:CAS:528:DC%2BD1MXhtl2rt7vP
    • Kumar, S., Singh, S. P., Mishra, I. M., & Adhikari, D. K. (2009). Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. Journal of Industrial Microbiology and Biotechnology, 36, 1483–1489.
    • (2009) Journal of Industrial Microbiology and Biotechnology , vol.36 , pp. 1483-1489
    • Kumar, S.1    Singh, S.P.2    Mishra, I.M.3    Adhikari, D.K.4
  • 14
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist, D., Hahn-Hagerdal, B., & Radström, P. (2010). Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 3, 1–7.
    • (2010) Biotechnology for Biofuels , vol.3 , pp. 1-7
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radström, P.3
  • 15
    • 84964313643 scopus 로고    scopus 로고
    • Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1
    • Bhalla, A., Bischoff, K. M., & Sani, R. K. (2014). Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnology, 14, 1–10.
    • (2014) BMC Biotechnology , vol.14 , pp. 1-10
    • Bhalla, A.1    Bischoff, K.M.2    Sani, R.K.3
  • 16
    • 84895478762 scopus 로고    scopus 로고
    • β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation
    • COI: 1:CAS:528:DC%2BC3sXhvV2gsLnE
    • Lagaert, S., Pollet, A., Courtin, C. M., & Volckaert, G. (2014). β-xylosidases and α-L-arabinofuranosidases: accessory enzymes for arabinoxylan degradation. Biotechnology Advances, 32, 316–332.
    • (2014) Biotechnology Advances , vol.32 , pp. 316-332
    • Lagaert, S.1    Pollet, A.2    Courtin, C.M.3    Volckaert, G.4
  • 17
    • 34848891869 scopus 로고    scopus 로고
    • Characterization of b-xylosidase enzyme from a Pichia stipitis mutant
    • COI: 1:CAS:528:DC%2BD2sXhtFers7bJ
    • Basaran, P., & Ozcan, M. (2008). Characterization of b-xylosidase enzyme from a Pichia stipitis mutant. Bioresource Technology, 99, 38–43.
    • (2008) Bioresource Technology , vol.99 , pp. 38-43
    • Basaran, P.1    Ozcan, M.2
  • 18
    • 84873946502 scopus 로고    scopus 로고
    • Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum
    • COI: 1:CAS:528:DC%2BC3sXis1aqtb0%3D
    • Shi, H., Li, X., Gu, H., Zhang, Y., Huang, Y., Wang, L., & Wang, F. (2013). Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum. Biotechnology for Biofuels, 6, 1–10.
    • (2013) Biotechnology for Biofuels , vol.6 , pp. 1-10
    • Shi, H.1    Li, X.2    Gu, H.3    Zhang, Y.4    Huang, Y.5    Wang, L.6    Wang, F.7
  • 21
    • 84991908759 scopus 로고    scopus 로고
    • Production of biofuels from lignocellulosic biomass in pulp and paper mill effluents for low carbon society
    • Thakur, I. S., & Nakagoshi, N. (2011). Production of biofuels from lignocellulosic biomass in pulp and paper mill effluents for low carbon society. Journal of International Development Cooperation, 18, 1–12.
    • (2011) Journal of International Development Cooperation , vol.18 , pp. 1-12
    • Thakur, I.S.1    Nakagoshi, N.2
  • 22
    • 0024729951 scopus 로고
    • Fermentation of lignocelluloses hydrolysates with yeasts and xylose isomerase
    • COI: 1:CAS:528:DyaL1MXltlamsL8%3D
    • Linden, T., & Hahn-Hagerdal, B. (1989). Fermentation of lignocelluloses hydrolysates with yeasts and xylose isomerase. Enzyme and Microbial Technology, 11, 583–589.
    • (1989) Enzyme and Microbial Technology , vol.11 , pp. 583-589
    • Linden, T.1    Hahn-Hagerdal, B.2
  • 23
    • 0033514342 scopus 로고    scopus 로고
    • Screening of non-Saccharomyces wine yeasts for the production of b-D-xylosidase activity
    • COI: 1:CAS:528:DyaK1MXhs1OrsrY%3D
    • Manzanares, P., Ramon, D., & Querol, A. (1999). Screening of non-Saccharomyces wine yeasts for the production of b-D-xylosidase activity. International Journal of Food Microbiology, 46, 105–112.
    • (1999) International Journal of Food Microbiology , vol.46 , pp. 105-112
    • Manzanares, P.1    Ramon, D.2    Querol, A.3
  • 24
    • 79551476044 scopus 로고    scopus 로고
    • Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485
    • COI: 1:CAS:528:DC%2BC3MXisVOrt7c%3D
    • Shao, W., Xue, Y., Wu, A., Kataeva, I., Pei, J., Wu, H., & Wiegel, J. (2011). Characterization of a novel beta-xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Applied and Environmental Microbiology, 77, 719–726.
    • (2011) Applied and Environmental Microbiology , vol.77 , pp. 719-726
    • Shao, W.1    Xue, Y.2    Wu, A.3    Kataeva, I.4    Pei, J.5    Wu, H.6    Wiegel, J.7
  • 25
    • 84876690276 scopus 로고    scopus 로고
    • Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues
    • COI: 1:CAS:528:DC%2BC3sXms1Ghs7Y%3D
    • Anand, A., Kumar, V., & Satyanarayana, T. (2013). Characteristics of thermostable endoxylanase and β-xylosidase of the extremely thermophilic bacterium Geobacillus thermodenitrificans TSAA1 and its applicability in generating xylooligosaccharides and xylose from agro-residues. Extremophiles, 17, 357–366.
    • (2013) Extremophiles , vol.17 , pp. 357-366
    • Anand, A.1    Kumar, V.2    Satyanarayana, T.3
  • 26
    • 84891863154 scopus 로고    scopus 로고
    • GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509
    • COI: 1:CAS:528:DC%2BC3sXhs1Sgu73P
    • Huang, Z., Liu, X., Zhang, S., & Liu, Z. (2014). GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509. Journal of Industrial Microbiology and Biotechnology, 41, 65–74.
    • (2014) Journal of Industrial Microbiology and Biotechnology , vol.41 , pp. 65-74
    • Huang, Z.1    Liu, X.2    Zhang, S.3    Liu, Z.4
  • 28
    • 50849109464 scopus 로고    scopus 로고
    • Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
    • COI: 1:CAS:528:DC%2BD1cXhtVKisLrF
    • Hector, R., Qureshi, N., Hughes, S., & Cotta, M. (2008). Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology, 80, 675–684.
    • (2008) Applied Microbiology and Biotechnology , vol.80 , pp. 675-684
    • Hector, R.1    Qureshi, N.2    Hughes, S.3    Cotta, M.4
  • 29
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD1MXntVOlsA%3D%3D
    • Runquist, D., Fonseca, C., Radstrom, P., Spencer-Martins, I., & Hahn-Hagerdal, B. (2009). Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 82, 123–130.
    • (2009) Applied Microbiology and Biotechnology , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Radstrom, P.3    Spencer-Martins, I.4    Hahn-Hagerdal, B.5
  • 30
    • 67349161409 scopus 로고    scopus 로고
    • An in vivo, label-free quick assay for xylose transport in Escherichia coli
    • COI: 1:CAS:528:DC%2BD1MXmsVCntbo%3D
    • Chen, T., Zhang, J., Liang, L., Yang, R., & Lin, Z. (2009). An in vivo, label-free quick assay for xylose transport in Escherichia coli. Analytical Biochemistry, 390, 63–67.
    • (2009) Analytical Biochemistry , vol.390 , pp. 63-67
    • Chen, T.1    Zhang, J.2    Liang, L.3    Yang, R.4    Lin, Z.5
  • 31
    • 84884473704 scopus 로고    scopus 로고
    • An assay for functional xylose transporters in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3sXhs1SrsLrP
    • Wang, C., Shen, Y., Hou, J., Suo, F., & Bao, X. (2013). An assay for functional xylose transporters in Saccharomyces cerevisiae. Analytical Biochemistry, 442, 241–248.
    • (2013) Analytical Biochemistry , vol.442 , pp. 241-248
    • Wang, C.1    Shen, Y.2    Hou, J.3    Suo, F.4    Bao, X.5
  • 32
    • 74049128960 scopus 로고    scopus 로고
    • An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli
    • Ren, C., Chen, T., Zhang, J., Liang, L., & Lin, Z. (2009). An evolved xylose transporter from Zymomonas mobilis enhances sugar transport in Escherichia coli. Microbal Cell Factories, 8, 1–9.
    • (2009) Microbal Cell Factories , vol.8 , pp. 1-9
    • Ren, C.1    Chen, T.2    Zhang, J.3    Liang, L.4    Lin, Z.5
  • 33
    • 0037209777 scopus 로고    scopus 로고
    • Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD38XnvVOqurk%3D
    • Lee, W. J., Kim, M. D., Ryu, Y. W., Bisson, L. F., & Seo, J. H. (2002). Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 60, 186–191.
    • (2002) Applied Microbiology and Biotechnology , vol.60 , pp. 186-191
    • Lee, W.J.1    Kim, M.D.2    Ryu, Y.W.3    Bisson, L.F.4    Seo, J.H.5
  • 35
    • 84946725890 scopus 로고    scopus 로고
    • A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production
    • Arora, R., Behera, S., Sharma, N. K., & Kumar, S. (2015). A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Frontiers in Microbiology, 6, 1–16.
    • (2015) Frontiers in Microbiology , vol.6 , pp. 1-16
    • Arora, R.1    Behera, S.2    Sharma, N.K.3    Kumar, S.4
  • 36
    • 84874394650 scopus 로고    scopus 로고
    • Bioethanol production from biomass
    • Ph.D thesis, IIT Roorkee
    • Kumar, S. (2009). Bioethanol production from biomass. Ph.D thesis, IIT Roorkee.
    • (2009)
    • Kumar, S.1
  • 37
    • 85016078412 scopus 로고    scopus 로고
    • Comparative study of fermentation efficiency for bio-ethanol production by isolates
    • Kumar S, Sarma AK, Tyagi SK, Yadav YK, (eds), SSS-NIRE, III, Kapurthala
    • Arora, R., Behera, S., & Kumar, S. (2014). Comparative study of fermentation efficiency for bio-ethanol production by isolates. In S. Kumar, A. K. Sarma, S. K. Tyagi, & Y. K. Yadav (Eds.), Recent advances in bio-energy research (pp. 149–155). Kapurthala: SSS-NIRE, III.
    • (2014) Recent advances in bio-energy research , pp. 149-155
    • Arora, R.1    Behera, S.2    Kumar, S.3
  • 38
    • 78649922301 scopus 로고    scopus 로고
    • Optimizing pentose utilization in yeast: the need for novel tools and approaches
    • Young, E., Lee, S. M., & Alper, H. (2010). Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnology for Biofuels, 3, 1–12.
    • (2010) Biotechnology for Biofuels , vol.3 , pp. 1-12
    • Young, E.1    Lee, S.M.2    Alper, H.3
  • 39
    • 84858262547 scopus 로고    scopus 로고
    • Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae
    • Subtil, T., & Boles, E. (2012). Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 5, 1–12.
    • (2012) Biotechnology for Biofuels , vol.5 , pp. 1-12
    • Subtil, T.1    Boles, E.2
  • 40
    • 84871397277 scopus 로고    scopus 로고
    • Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides
    • COI: 1:CAS:528:DC%2BC3sXisVSnsLw%3D
    • Lasrado, L. D., & Gudipati, M. (2013). Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydrate Polymers, 92, 1978–1983.
    • (2013) Carbohydrate Polymers , vol.92 , pp. 1978-1983
    • Lasrado, L.D.1    Gudipati, M.2
  • 41
    • 81855184585 scopus 로고    scopus 로고
    • Bioethanol production from pentose sugars: current status and future prospects
    • COI: 1:CAS:528:DC%2BC3MXhsV2msLjK
    • Kuhad, R. C., Gupta, R., Khasa, Y. P., Singh, A., & Zhang, Y. H. P. (2011). Bioethanol production from pentose sugars: current status and future prospects. Renewable and Sustainable Energy Review, 15, 4950–4962.
    • (2011) Renewable and Sustainable Energy Review , vol.15 , pp. 4950-4962
    • Kuhad, R.C.1    Gupta, R.2    Khasa, Y.P.3    Singh, A.4    Zhang, Y.H.P.5
  • 42
    • 84900839963 scopus 로고    scopus 로고
    • Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    • Smith, J., Van Rensburg, E., & Gorgens, J. F. (2014). Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology, 15, 14–41.
    • (2014) BMC Biotechnology , vol.15 , pp. 14-41
    • Smith, J.1    Van Rensburg, E.2    Gorgens, J.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.