메뉴 건너뛰기




Volumn 139, Issue , 2015, Pages 149-160

Semi-supervised learning and feature evaluation for RGB-D object recognition

Author keywords

Feature evaluation; Feature representation; Object recognition; RGB D; Semi supervised learning

Indexed keywords

COMPUTER VISION; LEARNING SYSTEMS; OBJECT RECOGNITION; OBJECT-ORIENTED DATABASES;

EID: 84939792473     PISSN: 10773142     EISSN: 1090235X     Source Type: Journal    
DOI: 10.1016/j.cviu.2015.05.007     Document Type: Article
Times cited : (46)

References (42)
  • 1
    • 84455172978 scopus 로고    scopus 로고
    • Depth kernel descriptors for object recognition
    • L. Bo, X. Ren, and D. Fox Depth kernel descriptors for object recognition IROS 2011
    • (2011) IROS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 2
    • 84864477116 scopus 로고    scopus 로고
    • A learned feature descriptor for object recognition in rgb-d data
    • M. Blum, J.T. Springenberg, J. Wulfing, and M. Riedmiller A learned feature descriptor for object recognition in rgb-d data ICRA 2012
    • (2012) ICRA
    • Blum, M.1    Springenberg, J.T.2    Wulfing, J.3    Riedmiller, M.4
  • 4
    • 84877789646 scopus 로고    scopus 로고
    • Convolutional-recursive deep learning for 3d object classification
    • R. Socher, B. Huval, B. Bath, C.D. Manning, and A. Ng Convolutional-recursive deep learning for 3d object classification NIPS 2012
    • (2012) NIPS
    • Socher, R.1    Huval, B.2    Bath, B.3    Manning, C.D.4    Ng, A.5
  • 5
    • 84856641335 scopus 로고    scopus 로고
    • Going into depth: Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset
    • B. Browatzki, J. Fischer, B. Graf, H. Bulthoff, and C. Wallraven Going into depth: evaluating 2d and 3d cues for object classification on a new, large-scale object dataset ICCV Workshops 2011
    • (2011) ICCV Workshops
    • Browatzki, B.1    Fischer, J.2    Graf, B.3    Bulthoff, H.4    Wallraven, C.5
  • 8
    • 84885380362 scopus 로고    scopus 로고
    • Object detection, shape recovery, and 3d modelling by depth-encoded hough voting
    • M. Sun, S.S. Kumar, G.R. Bradski, and S. Savarese Object detection, shape recovery, and 3d modelling by depth-encoded hough voting Comput. Vis. Image Understanding 117 9 2013 1190 1202
    • (2013) Comput. Vis. Image Understanding , vol.117 , Issue.9 , pp. 1190-1202
    • Sun, M.1    Kumar, S.S.2    Bradski, G.R.3    Savarese, S.4
  • 9
    • 84911441879 scopus 로고    scopus 로고
    • Are cars just 3d boxes? Jointly estimating the 3d shape of multiple objects
    • M. Zia, M. Stark, and K. Schindler Are cars just 3d boxes? Jointly estimating the 3d shape of multiple objects CVPR 2014
    • (2014) CVPR
    • Zia, M.1    Stark, M.2    Schindler, K.3
  • 12
    • 84856630785 scopus 로고    scopus 로고
    • Detecting and tracking people using an rgb-d camera via multiple detector fusion
    • W. Choi, C. Pantofaru, and S. Savarese Detecting and tracking people using an rgb-d camera via multiple detector fusion ICCV Workshops 2011
    • (2011) ICCV Workshops
    • Choi, W.1    Pantofaru, C.2    Savarese, S.3
  • 15
    • 84885873397 scopus 로고    scopus 로고
    • Rgbd-hudaact: A color-depth video database for human daily activity recognition
    • Springer
    • B. Ni, G. Wang, and P. Moulin Rgbd-hudaact: a color-depth video database for human daily activity recognition Consumer Depth Cameras for Computer Vision 2013 Springer 193 208
    • (2013) Consumer Depth Cameras for Computer Vision , pp. 193-208
    • Ni, B.1    Wang, G.2    Moulin, P.3
  • 16
    • 84864487638 scopus 로고    scopus 로고
    • Unstructured human activity detection from rgbd images
    • J. Sung, C. Ponce, B. Selman, and A. Saxena Unstructured human activity detection from rgbd images ICRA 2012
    • (2012) ICRA
    • Sung, J.1    Ponce, C.2    Selman, B.3    Saxena, A.4
  • 17
    • 84898798081 scopus 로고    scopus 로고
    • Sun3d: A database of big spaces reconstructed using sfm and object labels
    • J. Xiao, A. Owens, and A. Torralba Sun3d: a database of big spaces reconstructed using sfm and object labels ICCV 2013
    • (2013) ICCV
    • Xiao, J.1    Owens, A.2    Torralba, A.3
  • 18
    • 84856656491 scopus 로고    scopus 로고
    • Indoor scene segmentation using a structured light sensor
    • N. Silberman, and R. Fergus Indoor scene segmentation using a structured light sensor ICCV Workshop 2011
    • (2011) ICCV Workshop
    • Silberman, N.1    Fergus, R.2
  • 19
    • 84455201478 scopus 로고    scopus 로고
    • Sparse distance learning for object recognition combining rgb and depth information
    • K. Lai, L. Bo, X. Ren, and D. Fox Sparse distance learning for object recognition combining rgb and depth information ICRA 2011
    • (2011) ICRA
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 23
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • A. Blum, and T. Mitchell Combining labeled and unlabeled data with co-training COLT 1998
    • (1998) COLT
    • Blum, A.1    Mitchell, T.2
  • 24
    • 33750738734 scopus 로고    scopus 로고
    • Co-training and expansion: Towards bridging theory and practice
    • M.-F. Balcan, A. Blum, and K. Yang Co-training and expansion: towards bridging theory and practice NIPS 2004
    • (2004) NIPS
    • Balcan, M.-F.1    Blum, A.2    Yang, K.3
  • 25
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum, and S. Chawla Learning from labeled and unlabeled data using graph mincuts ICML 2001
    • (2001) ICML
    • Blum, A.1    Chawla, S.2
  • 28
    • 80053438267 scopus 로고    scopus 로고
    • Parsing natural scenes and natural language with recursive neural networks
    • R. Socher, C.C. Lin, C. Manning, and A.Y. Ng Parsing natural scenes and natural language with recursive neural networks ICML 2011
    • (2011) ICML
    • Socher, R.1    Lin, C.C.2    Manning, C.3    Ng, A.Y.4
  • 29
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun Spatial pyramid pooling in deep convolutional networks for visual recognition ECCV 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 30
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories CVPR 2006
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 31
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G.E. Hinton Imagenet classification with deep convolutional neural networks NIPS 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 32
    • 84919915366 scopus 로고    scopus 로고
    • Semi-supervised learning for rgb-d object recognition
    • Y. Cheng, X. Zhao, K. Huang, and T. Tan Semi-supervised learning for rgb-d object recognition ICPR 2014
    • (2014) ICPR
    • Cheng, Y.1    Zhao, X.2    Huang, K.3    Tan, T.4
  • 35
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D.G. Lowe Distinctive image features from scale-invariant keypoints IJCV 60 2 2004 91 110
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 36
    • 0032685832 scopus 로고    scopus 로고
    • Using spin images for efficient object recognition in cluttered 3d scenes
    • A.E. Johnson, and M. Hebert Using spin images for efficient object recognition in cluttered 3d scenes PAMI 21 5 1999 433 449
    • (1999) PAMI , vol.21 , Issue.5 , pp. 433-449
    • Johnson, A.E.1    Hebert, M.2
  • 37
    • 0035358496 scopus 로고    scopus 로고
    • Representing and recognizing the visual appearance of materials using three-dimensional textons
    • T. Leung, and J. Malik Representing and recognizing the visual appearance of materials using three-dimensional textons IJCV 43 1 2001 29 44
    • (2001) IJCV , vol.43 , Issue.1 , pp. 29-44
    • Leung, T.1    Malik, J.2
  • 38
    • 85162018819 scopus 로고    scopus 로고
    • Kernel descriptors for visual recognition
    • L. Bo, X. Ren, and D. Fox Kernel descriptors for visual recognition NIPS 2010
    • (2010) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 39
    • 78149331496 scopus 로고    scopus 로고
    • Efficient match kernel between sets of features for visual recognition.
    • L. Bo, and C. Sminchisescu Efficient match kernel between sets of features for visual recognition. NIPS 2009
    • (2009) NIPS
    • Bo, L.1    Sminchisescu, C.2
  • 40
    • 85162387004 scopus 로고    scopus 로고
    • Hierarchical matching pursuit for image classification: Architecture and fast algorithms
    • L. Bo, X. Ren, and D. Fox Hierarchical matching pursuit for image classification: architecture and fast algorithms NIPS 2011
    • (2011) NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 41
    • 84856645388 scopus 로고    scopus 로고
    • Fusing visual and range imaging for object class recognition
    • A. Bar-Hillel, D. Hanukaev, and D. Levi Fusing visual and range imaging for object class recognition ICCV 2011
    • (2011) ICCV
    • Bar-Hillel, A.1    Hanukaev, D.2    Levi, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.