메뉴 건너뛰기




Volumn 61, Issue 6, 2016, Pages 1001-1009

Multiple linear regression, multi-layer perceptron network and adaptive neuro-fuzzy inference system for forecasting precipitation based on large-scale climate signals

Author keywords

adaptive neuro fuzzy inference system; climate signals; multi layer perceptron network; multiple linear regression; standardized precipitation index

Indexed keywords

CATCHMENTS; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; LINEAR REGRESSION; NETWORK LAYERS; STREAM FLOW; WEATHER FORECASTING;

EID: 84961390532     PISSN: 02626667     EISSN: 21503435     Source Type: Journal    
DOI: 10.1080/02626667.2014.966721     Document Type: Article
Times cited : (142)

References (49)
  • 1
    • 76149098791 scopus 로고    scopus 로고
    • El Nino southern oscillation link to the Blue Nile River Basin hydrology
    • W.Abtew,, M.A.Melesse,, and T.Dessalegne,, 2009. El Nino southern oscillation link to the Blue Nile River Basin hydrology. Hydrological Process, 23 (26), 3653–3660.
    • (2009) Hydrological Process , vol.23 , Issue.26 , pp. 3653-3660
    • Abtew, W.1    Melesse, M.A.2    Dessalegne, T.3
  • 2
    • 79955799657 scopus 로고    scopus 로고
    • Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration
    • H.Z.Abyaneh,, et al., 2011. Performance evaluation of ANN and ANFIS models for estimating garlic crop evapotranspiration. Journal of Irrigation and Drainage Engineering, 137 (5), 280–286. doi:10.1061/(ASCE)IR.1943-4774.0000298
    • (2011) Journal of Irrigation and Drainage Engineering , vol.137 , Issue.5 , pp. 280-286
    • Abyaneh, H.Z.1
  • 3
    • 84862247445 scopus 로고    scopus 로고
    • Annual precipitation forecast for west, southwest, and south provinces of Iran using artificial neural networks
    • S.Azadi, and A.R.Sepaskhah,, 2012. Annual precipitation forecast for west, southwest, and south provinces of Iran using artificial neural networks. Theoretical and Applied Climatology, 109 (1–2), 175–189. doi:10.1007/s00704-011-0575-9
    • (2012) Theoretical and Applied Climatology , vol.109 , Issue.1-2 , pp. 175-189
    • Azadi, S.1    Sepaskhah, A.R.2
  • 4
    • 84871925292 scopus 로고    scopus 로고
    • El Niño-Southern Oscillation impacts on winter winds over Southern California
    • N.Berg,, et al., 2013. El Niño-Southern Oscillation impacts on winter winds over Southern California. Climate Dynamics, 40 (1–2), 109–121. doi:10.1007/s00382-012-1461-6
    • (2013) Climate Dynamics , vol.40 , Issue.1-2 , pp. 109-121
    • Berg, N.1
  • 5
    • 33845987564 scopus 로고    scopus 로고
    • Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals
    • J.Cañón,, J.González,, and J.Valdés,, 2007. Precipitation in the Colorado River Basin and its low frequency associations with PDO and ENSO signals. Journal of Hydrology, 333 (2–4), 252–264. doi:10.1016/j.jhydrol.2006.08.015
    • (2007) Journal of Hydrology , vol.333 , Issue.2-4 , pp. 252-264
    • Cañón, J.1    González, J.2    Valdés, J.3
  • 6
    • 34447256610 scopus 로고    scopus 로고
    • Feed forward artificial neural network model to predict the average summer monsoon rainfall in India
    • S.Chattopadhyay,, 2007. Feed forward artificial neural network model to predict the average summer monsoon rainfall in India. Acta Geophysica, 55 (3), 369–382. doi:10.2478/s11600-007-0020-8
    • (2007) Acta Geophysica , vol.55 , Issue.3 , pp. 369-382
    • Chattopadhyay, S.1
  • 7
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • S.L.Chiu,, 1994. Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2 (3), 267–278.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , Issue.3 , pp. 267-278
    • Chiu, S.L.1
  • 9
    • 70349436267 scopus 로고    scopus 로고
    • Artificial neural network models for forecasting intermittent monthly precipitation in arid regions
    • A.Dahamsheh, and H.Aksoy,, 2009. Artificial neural network models for forecasting intermittent monthly precipitation in arid regions. Meteorological Applications, 16 (3), 325–337. doi:10.1002/met.127
    • (2009) Meteorological Applications , vol.16 , Issue.3 , pp. 325-337
    • Dahamsheh, A.1    Aksoy, H.2
  • 10
    • 78049241576 scopus 로고    scopus 로고
    • Application of ANN and ANFIS models on dryland precipitation prediction (Case study: Yazd in Central Iran)
    • M.T.Dastorani,, et al., 2010. Application of ANN and ANFIS models on dryland precipitation prediction (Case study: Yazd in Central Iran). Journal of Applied Sciences, 10 (20), 2387–2394. doi:10.3923/jas.2010.2387.2394
    • (2010) Journal of Applied Sciences , vol.10 , Issue.20 , pp. 2387-2394
    • Dastorani, M.T.1
  • 11
    • 79960851974 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia
    • A.El-Shafie,, O.Jaafer,, and A.Seyed,, 2011. Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River, Malaysia. International Journal of the Physical Sciences, 6 (12), 2875–2888.
    • (2011) International Journal of the Physical Sciences , vol.6 , Issue.12 , pp. 2875-2888
    • El-Shafie, A.1    Jaafer, O.2    Seyed, A.3
  • 12
    • 77953808998 scopus 로고    scopus 로고
    • Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS)
    • G.A.Fallah-Ghalhary,, et al., 2010. Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS). Theoretical and Applied Climatology, 101 (1–2), 217–233. doi:10.1007/s00704-009-0194-x
    • (2010) Theoretical and Applied Climatology , vol.101 , Issue.1-2 , pp. 217-233
    • Fallah-Ghalhary, G.A.1
  • 13
    • 84987013440 scopus 로고
    • Using theoretical descriptors in quantitative structure activity relationships: some physicochemical properties
    • G.R.Famini,, C.A.Penski,, and L.Y.Wilson,, 1992. Using theoretical descriptors in quantitative structure activity relationships: some physicochemical properties. Journalof Physical Organic Chemistry, 5 (7), 395–408. doi:10.1002/poc.610050704
    • (1992) Journalof Physical Organic Chemistry , vol.5 , Issue.7 , pp. 395-408
    • Famini, G.R.1    Penski, C.A.2    Wilson, L.Y.3
  • 14
    • 33947626509 scopus 로고    scopus 로고
    • Dynamic mechanical analysis and chemometrics for polymer identification
    • R.Faria,, J.C.Duncan,, and R.G.Brereton,, 2007. Dynamic mechanical analysis and chemometrics for polymer identification. Polymer Testing, 26 (3), 402–412. doi:10.1016/j.polymertesting.2006.12.012
    • (2007) Polymer Testing , vol.26 , Issue.3 , pp. 402-412
    • Faria, R.1    Duncan, J.C.2    Brereton, R.G.3
  • 15
    • 79955067051 scopus 로고    scopus 로고
    • Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques
    • A.Farokhnia,, S.Morid,, and H.-R.Byun,, 2011. Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology, 104 (1–2), 71–81. doi:10.1007/s00704-010-0317-4
    • (2011) Theoretical and Applied Climatology , vol.104 , Issue.1-2 , pp. 71-81
    • Farokhnia, A.1    Morid, S.2    Byun, H.-R.3
  • 16
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • M.Firat, and M.Güngör,, 2007. River flow estimation using adaptive neuro fuzzy inference system. Mathematics and Computers in Simulation, 75, 87–96. doi:10.1016/j.matcom.2006.09.003
    • (2007) Mathematics and Computers in Simulation , vol.75 , pp. 87-96
    • Firat, M.1    Güngör, M.2
  • 17
    • 77950865898 scopus 로고    scopus 로고
    • Potential predictability of an Iberian river flow based on its relationship with previous winter global SST
    • S.R.Gámiz-Fortis,, et al., 2010. Potential predictability of an Iberian river flow based on its relationship with previous winter global SST. Journal of Hydrology, 385 (1–4), 143–149. doi:10.1016/j.jhydrol.2010.02.010
    • (2010) Journal of Hydrology , vol.385 , Issue.1-4 , pp. 143-149
    • Gámiz-Fortis, S.R.1
  • 18
    • 28244445173 scopus 로고    scopus 로고
    • A technique for incorporating large-scale climate information in basin-scale ensemble stream flow forecasts
    • K.Grantz,, et al., 2005. A technique for incorporating large-scale climate information in basin-scale ensemble stream flow forecasts. WaterResourcesResearch, 41 (10), 1–13. doi:10.1029/2004WR003467
    • (2005) WaterResourcesResearch , vol.41 , Issue.10 , pp. 1-13
    • Grantz, K.1
  • 19
    • 59649085783 scopus 로고    scopus 로고
    • Estimation of soil compaction parameters by using statistical analyses and artificial neural networks
    • O.Günaydın,, 2009. Estimation of soil compaction parameters by using statistical analyses and artificial neural networks. Environmental Geology, 57 (1), 203–215. doi:10.1007/s00254-008-1300-6
    • (2009) Environmental Geology , vol.57 , Issue.1 , pp. 203-215
    • Günaydın, O.1
  • 20
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • K.-L.Hsu,, H.V.Gupta,, and S.Sorooshian,, 1995. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research, 31 (10), 2517–2530. doi:10.1029/95WR01955
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.-L.1    Gupta, H.V.2    Sorooshian, S.3
  • 21
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • G.-B.Huang,, Q.-Y.Zhu,, and C.-K.Siew,, 2006. Extreme learning machine: theory and applications. Neurocomputing, 70 (1–3), 489–501. doi:10.1016/j.neucom.2005.12.126
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 22
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • J.-S.R.Jang,, 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23 (3), 665–685. doi:10.1109/21.256541
    • (1993) IEEE Transactions on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.-S.R.1
  • 23
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • J.-S.R.Jang, and C.-T.Sun,, 1995. Neuro-fuzzy modeling and control. Proceedings of the IEEE, 83 (3), 378–406. doi:10.1109/5.364486
    • (1995) Proceedings of the IEEE , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.-S.R.1    Sun, C.-T.2
  • 24
    • 84868210863 scopus 로고    scopus 로고
    • Monthly precipitation forecasting with a neuro-fuzzy model
    • C.H.Jeong,, et al., 2012. Monthly precipitation forecasting with a neuro-fuzzy model. WaterResourcesManagement, 26 (15), 4467–4483. doi:10.1007/s11269-012-0157-3
    • (2012) WaterResourcesManagement , vol.26 , Issue.15 , pp. 4467-4483
    • Jeong, C.H.1
  • 26
    • 34250493668 scopus 로고
    • A second generation little jiffy
    • H.F.Kaiser,, 1970. A second generation little jiffy. Psychometrika, 35, 401–415. doi:10.1007/BF02291817
    • (1970) Psychometrika , vol.35 , pp. 401-415
    • Kaiser, H.F.1
  • 27
    • 34250421484 scopus 로고
    • An index of factorial simplicity
    • H.F.Kaiser,, 1974. An index of factorial simplicity. Psychometrika, 39, 31–36. doi:10.1007/BF02291575
    • (1974) Psychometrika , vol.39 , pp. 31-36
    • Kaiser, H.F.1
  • 28
    • 65349101737 scopus 로고    scopus 로고
    • Using oceanic–atmospheric oscillations for long lead time streamflow forecasting
    • A.Kalra, and S.Ahmad,, 2009. Using oceanic–atmospheric oscillations for long lead time streamflow forecasting. Water Resources Research, 45 (3), 1–18. doi:10.1029/2008WR006855
    • (2009) Water Resources Research , vol.45 , Issue.3 , pp. 1-18
    • Kalra, A.1    Ahmad, S.2
  • 29
    • 84877681819 scopus 로고    scopus 로고
    • Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins
    • A.Kalra,, et al.,2013. Using large-scale climatic patterns for improving long lead time streamflow forecasts for Gunnison and San Juan River Basins. Hydrological Processes, 27 (11), 1543–1559. doi:10.1002/hyp.9236
    • (2013) Hydrological Processes , vol.27 , Issue.11 , pp. 1543-1559
    • Kalra, A.1
  • 30
    • 16644370483 scopus 로고    scopus 로고
    • The influences of the Southern and North Atlantic Oscillations on climatic surface variables in Turkey
    • M.C.Karabork,, E.Kahya,, and M.Karaca,, 2005. The influences of the Southern and North Atlantic Oscillations on climatic surface variables in Turkey. Hydrological Processes, 19 (6), 1185–1211. doi:10.1002/hyp.5560
    • (2005) Hydrological Processes , vol.19 , Issue.6 , pp. 1185-1211
    • Karabork, M.C.1    Kahya, E.2    Karaca, M.3
  • 31
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • T.Kim, and J.Valdés,, 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering, 8 (6), 319–328. doi:10.1061/(ASCE)1084-0699(2003)8:6(319)
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.1    Valdés, J.2
  • 32
    • 39349088316 scopus 로고    scopus 로고
    • Influence of climate variation on seasonal precipitation in the Colorado River Basin
    • T.-W.Kim,, C.Yoo,, and J.-H.Ahn,, 2008. Influence of climate variation on seasonal precipitation in the Colorado River Basin. Stochastic Environmental Research and Risk Assessment, 22 (3), 411–420. doi:10.1007/s00477-007-0126-1
    • (2008) Stochastic Environmental Research and Risk Assessment , vol.22 , Issue.3 , pp. 411-420
    • Kim, T.-W.1    Yoo, C.2    Ahn, J.-H.3
  • 33
    • 80053449485 scopus 로고    scopus 로고
    • Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models
    • O.Kisi, and J.Shiri,, 2011. Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models. WaterResourcesManagement, 25 (13), 3135–3152. doi:10.1007/s11269-011-9849-3
    • (2011) WaterResourcesManagement , vol.25 , Issue.13 , pp. 3135-3152
    • Kisi, O.1    Shiri, J.2
  • 34
    • 34547938290 scopus 로고    scopus 로고
    • Regional rainfall forecasting using large scale climate teleconnections and artificial intelligence techniques
    • D.N.Kumar,, M.J.Reddy,, and R.Maity,, 2007. Regional rainfall forecasting using large scale climate teleconnections and artificial intelligence techniques. Journal of Intelligent Systems, 16 (4), 307–322.
    • (2007) Journal of Intelligent Systems , vol.16 , Issue.4 , pp. 307-322
    • Kumar, D.N.1    Reddy, M.J.2    Maity, R.3
  • 35
    • 73649113119 scopus 로고    scopus 로고
    • Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy
    • B.Kurtulus, and M.Razack,, 2010. Modeling daily discharge responses of a large karstic aquifer using soft computing methods: artificial neural network and neuro-fuzzy. Journal of Hydrology, 381 (1–2), 101–111. doi:10.1016/j.jhydrol.2009.11.029
    • (2010) Journal of Hydrology , vol.381 , Issue.1-2 , pp. 101-111
    • Kurtulus, B.1    Razack, M.2
  • 36
    • 84867783814 scopus 로고    scopus 로고
    • Development of a methodology for in situ assessment of topsoil dry bulk density
    • M.Z.Quraishi, and A.M.Mouazen,, 2013. Development of a methodology for in situ assessment of topsoil dry bulk density. Soil and Tillage Research, 126, 229–237. doi:10.1016/j.still.2012.08.009
    • (2013) Soil and Tillage Research , vol.126 , pp. 229-237
    • Quraishi, M.Z.1    Mouazen, A.M.2
  • 37
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • M.Ringnér,, 2008. What is principal component analysis? Nature Biotechnology, 26 (3), 303–304. doi:10.1038/nbt0308-303
    • (2008) Nature Biotechnology , vol.26 , Issue.3 , pp. 303-304
    • Ringnér, M.1
  • 38
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • D.E.Rumelhart,, G.E.Hinton,, and R.J.Williams,, 1986. Learning representations by back-propagating errors. Nature, 323, 533–536. doi:10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 39
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • H.Sanikhani, and O.Kisi,, 2012. River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. WaterResourcesManagement, 26 (6), 1715–1729. doi:10.1007/s11269-012-9982-7
    • (2012) WaterResourcesManagement , vol.26 , Issue.6 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 40
    • 3142534589 scopus 로고    scopus 로고
    • Recent changes in rainfall and rainy days in Ethiopia
    • Y.Seleshi, and U.Zanke,, 2004. Recent changes in rainfall and rainy days in Ethiopia. International Journal of Climatology, 24 (8), 973–983. doi:10.1002/joc.1052
    • (2004) International Journal of Climatology , vol.24 , Issue.8 , pp. 973-983
    • Seleshi, Y.1    Zanke, U.2
  • 41
    • 33750452998 scopus 로고    scopus 로고
    • Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan
    • S.Shrestha, and F.Kazama,, 2007. Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22 (4), 464–475. doi:10.1016/j.envsoft.2006.02.001
    • (2007) Environmental Modelling and Software , vol.22 , Issue.4 , pp. 464-475
    • Shrestha, S.1    Kazama, F.2
  • 42
    • 84901389068 scopus 로고    scopus 로고
    • Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharlu Basin in Iran
    • S.K.Sigaroodi,, et al., 2014. Long-term precipitation forecast for drought relief using atmospheric circulation factors: a study on the Maharlu Basin in Iran. Hydrology and Earth System Sciences, 18 (5), 1995–2006. doi:10.5194/hess-18-1995-2014.
    • (2014) Hydrology and Earth System Sciences , vol.18 , Issue.5 , pp. 1995-2006
    • Sigaroodi, S.K.1
  • 43
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T.Takagi, and M.Sugeno,, 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15 (1), 116–132. doi:10.1109/TSMC.1985.6313399
    • (1985) IEEE Transactions on Systems, Man, and Cybernetics , vol.SMC-15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 44
    • 60549102872 scopus 로고    scopus 로고
    • NN5: A neural network based approach for the downscaling of precipitation fields – model description and preliminary results
    • B.Tomassetti,, M.Verdecchia,, and F.Giorgi,, 2009. NN5: A neural network based approach for the downscaling of precipitation fields – model description and preliminary results. Journal of Hydrology, 367 (1–2), 14–26. doi:10.1016/j.jhydrol.2008.12.017
    • (2009) Journal of Hydrology , vol.367 , Issue.1-2 , pp. 14-26
    • Tomassetti, B.1    Verdecchia, M.2    Giorgi, F.3
  • 45
    • 0036713592 scopus 로고    scopus 로고
    • Data mining techniques for improved WSR-88D rainfall estimation
    • T.B.Trafalis,, et al., 2002. Data mining techniques for improved WSR-88D rainfall estimation. Computers&Industrial Engineering, 43 (4), 775–786. doi:10.1016/S0360-8352(02)00139-0
    • (2002) Computers&Industrial Engineering , vol.43 , Issue.4 , pp. 775-786
    • Trafalis, T.B.1
  • 46
    • 0347382667 scopus 로고    scopus 로고
    • Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930-2000
    • M.Turkes, and E.Elart,, 2003. Precipitation changes and variability in Turkey linked to the North Atlantic oscillation during the period 1930-2000. International Journal of Climatology, 23 (14), 1771–1796. doi:10.1002/joc.962
    • (2003) International Journal of Climatology , vol.23 , Issue.14 , pp. 1771-1796
    • Turkes, M.1    Elart, E.2
  • 47
    • 10644287862 scopus 로고    scopus 로고
    • Artificial neural network technique for rainfall forecasting applied to the São Paulo region
    • M.C.Valverde Ramírez,, H.F.De Campos Velho Maria,, and N.J.Ferreira,, 2005. Artificial neural network technique for rainfall forecasting applied to the São Paulo region. Journal of Hydrology, 301 (1–4), 146–162. doi:10.1016/j.jhydrol.2004.06.028
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 146-162
    • Valverde Ramírez, M.C.1    De Campos Velho Maria, H.F.2    Ferreira, N.J.3
  • 48
    • 0034025462 scopus 로고    scopus 로고
    • North Atlantic oscillation/annular mode: two paradigms -one phenomenon
    • J.M.Wallace,, 2000. North Atlantic oscillation/annular mode: two paradigms -one phenomenon. Quarterly Journal of the Royal Meteorological Society, 126 (564), 791–805. doi:10.1256/smsqj.56401
    • (2000) Quarterly Journal of the Royal Meteorological Society , vol.126 , Issue.564 , pp. 791-805
    • Wallace, J.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.