메뉴 건너뛰기




Volumn 104, Issue 1-2, 2011, Pages 71-81

Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; DATA SET; DROUGHT; FORECASTING METHOD; RISK ASSESSMENT; SEA LEVEL PRESSURE; SEA SURFACE TEMPERATURE;

EID: 79955067051     PISSN: 0177798X     EISSN: 14344483     Source Type: Journal    
DOI: 10.1007/s00704-010-0317-4     Document Type: Article
Times cited : (43)

References (38)
  • 2
    • 33748502504 scopus 로고    scopus 로고
    • Some atmospheric and oceanic indices as predictors of seasonal rainfall in the Del Plata Basin of Argentina
    • Almeira GJ, Scian B (2006) Some atmospheric and oceanic indices as predictors of seasonal rainfall in the Del Plata Basin of Argentina. J Hydrol 329: 350-359.
    • (2006) J Hydrol , vol.329 , pp. 350-359
    • Almeira, G.J.1    Scian, B.2
  • 3
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff
    • Aqil M, Kita I, Yano A, Nishiyama S (2007) A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behaviour of runoff. J Hydrol 337: 22-34.
    • (2007) J Hydrol , vol.337 , pp. 22-34
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology: I: preliminary concepts; II: hydrologic applications
    • ASCE Task Committee on Applications of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Applications of Artificial Neural Networks in Hydrology (2000) Artificial neural networks in hydrology: I: preliminary concepts; II: hydrologic applications. J Hydrol Eng 5: 115-137.
    • (2000) J Hydrol Eng , vol.5 , pp. 115-137
  • 5
    • 52949105994 scopus 로고    scopus 로고
    • Data mining within a regression framework
    • O. Maimon and L. Rokach (Eds.), New York: Springer
    • Berk RA (2005) Data mining within a regression framework. In: Maimon O, Rokach L (eds) Data mining and knowledge discovery handbook. Springer, New York, pp 231-256.
    • (2005) Data Mining and Knowledge Discovery Handbook , pp. 231-256
    • Berk, R.A.1
  • 7
    • 33745255504 scopus 로고    scopus 로고
    • Daily quantification of drought severity and duration
    • Byun HR, Wilhite DA (1999) Daily quantification of drought severity and duration. J Clim 5: 1181-1201.
    • (1999) J Clim , vol.5 , pp. 1181-1201
    • Byun, H.R.1    Wilhite, D.A.2
  • 8
    • 56349100536 scopus 로고    scopus 로고
    • Using neural networks and data mining techniques for the financial distress prediction model
    • Chen WS, Du YK (2009) Using neural networks and data mining techniques for the financial distress prediction model. Expert Syst Appl 36: 4057-4086.
    • (2009) Expert Syst Appl , vol.36 , pp. 4057-4086
    • Chen, W.S.1    Du, Y.K.2
  • 9
    • 0036602796 scopus 로고    scopus 로고
    • Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability
    • Chiew FHS, McMahon TA (2002) Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol Sci J 47: 505-522.
    • (2002) Hydrol Sci J , vol.47 , pp. 505-522
    • Chiew, F.H.S.1    McMahon, T.A.2
  • 10
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intell Fuzzy Syst 2: 267-278.
    • (1994) J Intell Fuzzy Syst , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 11
    • 0035297967 scopus 로고    scopus 로고
    • Near global scale sea surface temperature anomalies as predictors of Australian seasonal rainfall
    • Drosdowsky W, Chambers LE (2001) Near global scale sea surface temperature anomalies as predictors of Australian seasonal rainfall. J Clim 14: 1677-1687.
    • (2001) J Clim , vol.14 , pp. 1677-1687
    • Drosdowsky, W.1    Chambers, L.E.2
  • 13
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst Man Cybern 23: 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • Jang JSR, Sun CT (1995) Neuro-fuzzy modeling and control. Proc IEEE 83: 378-406.
    • (1995) Proc IEEE , vol.83 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 16
    • 43949087486 scopus 로고    scopus 로고
    • Structural optimisation and input selection of an artificial neural network for river level prediction
    • Leahy P, Kiely G, Corcoran G (2008) Structural optimisation and input selection of an artificial neural network for river level prediction. J Hydrol 355: 192-201.
    • (2008) J Hydrol , vol.355 , pp. 192-201
    • Leahy, P.1    Kiely, G.2    Corcoran, G.3
  • 17
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani EH, Assilian S (1974) An experiment in linguistic synthesis with a fuzzy logic controller. Int J Man Mach Stud 7: 1-13.
    • (1974) Int J Man Mach Stud , vol.7 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 18
    • 23044512802 scopus 로고    scopus 로고
    • A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact
    • Marce R, Comerma M, García JC, Armengol J (2004) A neuro-fuzzy modeling tool to estimate fluvial nutrient loads in watersheds under time-varying human impact. Limnol and Oceanogr Method 2: 342-355.
    • (2004) Limnol and Oceanogr Method , vol.2 , pp. 342-355
    • Marce, R.1    Comerma, M.2    García, J.C.3    Armengol, J.4
  • 19
    • 33747853860 scopus 로고    scopus 로고
    • Drought forecasting using feed-forward recursive neural network
    • Mishra AK, Desaia VR (2006) Drought forecasting using feed-forward recursive neural network. Ecol Model 198: 127-138.
    • (2006) Ecol Model , vol.198 , pp. 127-138
    • Mishra, A.K.1    Desaia, V.R.2
  • 20
    • 0036127265 scopus 로고    scopus 로고
    • Data mining in soft computing framework: a survey
    • Mitra S, Pal SK, Mitra P (2002) Data mining in soft computing framework: a survey. IEEE Trans Neural Netw 13: 3-14.
    • (2002) IEEE Trans Neural Netw , vol.13 , pp. 3-14
    • Mitra, S.1    Pal, S.K.2    Mitra, P.3
  • 23
    • 33745267737 scopus 로고    scopus 로고
    • Comparison of seven meteorological indices for drought monitoring in Iran
    • Morid S, Smakhtin V, Moghaddasi M (2006) Comparison of seven meteorological indices for drought monitoring in Iran. Int J Climatol 26: 971-985.
    • (2006) Int J Climatol , vol.26 , pp. 971-985
    • Morid, S.1    Smakhtin, V.2    Moghaddasi, M.3
  • 24
    • 37249024658 scopus 로고    scopus 로고
    • Drought forecasting using artificial neural networks and time series of drought indices
    • Morid S, Smakhtin V, Bagherzadeh K (2007) Drought forecasting using artificial neural networks and time series of drought indices. Int J Climatol 27: 2103-2111.
    • (2007) Int J Climatol , vol.27 , pp. 2103-2111
    • Morid, S.1    Smakhtin, V.2    Bagherzadeh, K.3
  • 25
    • 0344942505 scopus 로고    scopus 로고
    • Effects of the North Atlantic oscillation on the probability for climatic categories of local monthly rainfall in Southern Spain
    • Munoz-Diaz FS, Rodrigo FS (2006) Effects of the North Atlantic oscillation on the probability for climatic categories of local monthly rainfall in Southern Spain. Int J Climatol 23: 381-397.
    • (2006) Int J Climatol , vol.23 , pp. 381-397
    • Munoz-Diaz, F.S.1    Rodrigo, F.S.2
  • 26
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastrid KS (2004) A neuro-fuzzy computing technique for modeling hydrological time series. J Hydrol 291: 52-66.
    • (2004) J Hydrol , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastrid, K.S.4
  • 27
    • 70449471062 scopus 로고    scopus 로고
    • Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques
    • Noori R, Karbassi AR, Farokhnia A, Dehghani M (2009a) Predicting the longitudinal dispersion coefficient using support vector machine and adaptive neuro-fuzzy inference system techniques. Environ Eng Sci 26: 1503-1510.
    • (2009) Environ Eng Sci , vol.26 , pp. 1503-1510
    • Noori, R.1    Karbassi, A.R.2    Farokhnia, A.3    Dehghani, M.4
  • 28
    • 64049092449 scopus 로고    scopus 로고
    • Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network
    • Noori R, Abdoli MA, Farokhnia A, Abbasi M (2009b) Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Syst Appl 36: 9991-9999.
    • (2009) Expert Syst Appl , vol.36 , pp. 9991-9999
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4
  • 29
    • 73749085391 scopus 로고    scopus 로고
    • Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
    • Noori R, Hoshyaripour G, Ashrafi K, Nadjar-Araabi B (2010) Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmos Environ 44: 476-482.
    • (2010) Atmos Environ , vol.44 , pp. 476-482
    • Noori, R.1    Hoshyaripour, G.2    Ashrafi, K.3    Nadjar-Araabi, B.4
  • 30
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323: 533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 33846782919 scopus 로고    scopus 로고
    • Automated estimation and analyses of drought characteristics from monthly rainfall data
    • Smakhtin VU, Hughes DA (2007) Automated estimation and analyses of drought characteristics from monthly rainfall data. Environ Model Softw 22: 880-890.
    • (2007) Environ Model Softw , vol.22 , pp. 880-890
    • Smakhtin, V.U.1    Hughes, D.A.2
  • 34
    • 45449126257 scopus 로고
    • Structure identification of fuzzy model
    • Sugeno M, Kang GT (1988) Structure identification of fuzzy model. Fuzzy Sets Syst 28: 15-33.
    • (1988) Fuzzy Sets Syst , vol.28 , pp. 15-33
    • Sugeno, M.1    Kang, G.T.2
  • 35
    • 0021314119 scopus 로고
    • Derivation of fuzzy control rules from human operator's control actions
    • Takagi T, Sugeno M (1983) Derivation of fuzzy control rules from human operator's control actions. In: Proc IFAC Symp Fuzzy Inf, pp 55-60.
    • (1983) Proc IFAC Symp Fuzzy Inf , pp. 55-60
    • Takagi, T.1    Sugeno, M.2
  • 36
    • 0002906650 scopus 로고
    • An approach to fuzzy reasoning method
    • M. M. Gupta, R. K. Ragade, and R. R. Yager (Eds.), Amsterdam: Elsevier
    • Tsukamoto Y (1979) An approach to fuzzy reasoning method. In: Gupta MM, Ragade RK, Yager RR (eds) Advances in fuzzy set theory and applications. Elsevier, Amsterdam, pp 137-149.
    • (1979) Advances in Fuzzy Set Theory and Applications , pp. 137-149
    • Tsukamoto, Y.1
  • 37
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh LA (1965) Fuzzy sets. Inf Control 8: 338-353.
    • (1965) Inf Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 38
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural network
    • Zealand CM, Burn DH, Simonovic SP (1999) Short term streamflow forecasting using artificial neural network. J Hydrol 214: 32-48.
    • (1999) J Hydrol , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.