메뉴 건너뛰기




Volumn 381, Issue 1-2, 2010, Pages 101-111

Modeling daily discharge responses of a large karstic aquifer using soft computing methods: Artificial neural network and neuro-fuzzy

Author keywords

Adaptive Neuro Fuzzy Interface System (ANFIS); Artificial Neural Networks (ANN); Karst; La Rochefoucauld aquifer; Modeling; Soft computing

Indexed keywords

ANFIS MODEL; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS (ANN); AUTOMATIC PROCEDURES; CALIBRATED MODEL; DAILY DISCHARGE; GENERALIZATION CAPABILITY; HYDROGRAPHS; INPUT MODELS; KARST; KARST AQUIFER; KARST SYSTEM; KARSTIC AQUIFER; MAIN COMPONENT; MULTIPLE INPUTS; NEURO-FUZZY; NON-LINEAR; PEAK DISCHARGE; PEAK FLOWS; PIEZOMETRIC LEVELS; ROOT MEAN SQUARE ERRORS; SIMULATED DISCHARGES; SOFT COMPUTING METHODS; SUMMARY STATISTIC;

EID: 73649113119     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2009.11.029     Document Type: Article
Times cited : (80)

References (62)
  • 1
    • 33947572974 scopus 로고    scopus 로고
    • A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff
    • Akil M., Kita I., Yano A., and Nishiyama S. A comparative study of artificial neural networks and neuro-fuzzy in continuous modeling of the daily and hourly behavior of runoff. Journal of Hydrology 337 1-2 (2007) 22-34
    • (2007) Journal of Hydrology , vol.337 , Issue.1-2 , pp. 22-34
    • Akil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 2
    • 17044366644 scopus 로고    scopus 로고
    • Karst groundwater: a challenge for new resources
    • Bakalowicz M. Karst groundwater: a challenge for new resources. Hydrogeology Journal 13 1 (2005) 148-160
    • (2005) Hydrogeology Journal , vol.13 , Issue.1 , pp. 148-160
    • Bakalowicz, M.1
  • 3
    • 0344394527 scopus 로고    scopus 로고
    • River flow forecast for reservoir management through neural networks
    • Baratti M. River flow forecast for reservoir management through neural networks. Neurocomputing 55 (2003) 421-437
    • (2003) Neurocomputing , vol.55 , pp. 421-437
    • Baratti, M.1
  • 4
    • 0029412243 scopus 로고    scopus 로고
    • 1-, 2- and 3-dimensional modelling of water movement in the unsaturated soil matrix a using fuzzy approach
    • Bardossy A., Bronsterts A., and Merz B. 1-, 2- and 3-dimensional modelling of water movement in the unsaturated soil matrix a using fuzzy approach. Advances in Water Resources 18 4 (1996) 237-251
    • (1996) Advances in Water Resources , vol.18 , Issue.4 , pp. 237-251
    • Bardossy, A.1    Bronsterts, A.2    Merz, B.3
  • 6
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network model in water resources applications. Part 1 - background ans methodology
    • Bowden G., Dandy G., and Maier H. Input determination for neural network model in water resources applications. Part 1 - background ans methodology. Journal of Hydrology 301 (2005) 75-92
    • (2005) Journal of Hydrology , vol.301 , pp. 75-92
    • Bowden, G.1    Dandy, G.2    Maier, H.3
  • 7
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • Chang F.J., and Chang Y.T. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources 29 (2006) 1-10
    • (2006) Advances in Water Resources , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 8
    • 0031167377 scopus 로고    scopus 로고
    • A fuzzy multi-objective programming approach for optimal management of the reservoir watershed
    • Chang N.B., Weu G.G., and Chen Y.L. A fuzzy multi-objective programming approach for optimal management of the reservoir watershed. European Journal of Operational Research 99 2-1 (1997) 289-302
    • (1997) European Journal of Operational Research , vol.99 , Issue.2-1 , pp. 289-302
    • Chang, N.B.1    Weu, G.G.2    Chen, Y.L.3
  • 9
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro fuzzy network
    • Chen S.H., Lin Y.H., Chang L.C., and Chang F.J. The strategy of building a flood forecast model by neuro fuzzy network. Hydrological Processes 20 (2006) 1525-1540
    • (2006) Hydrological Processes , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 10
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural network in monthly flow forecasting
    • Cigizoglu H.K. Generalized regression neural network in monthly flow forecasting. Civil Engineering and Environmental Systems 22 2 (2005) 71-84
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 12
    • 0037376237 scopus 로고    scopus 로고
    • Composite transfer functions for karst aquifers
    • Denic-Jukic V., and Jukic D. Composite transfer functions for karst aquifers. Journal of Hydrology 274 (2003) 80-94
    • (2003) Journal of Hydrology , vol.274 , pp. 80-94
    • Denic-Jukic, V.1    Jukic, D.2
  • 13
    • 20344385052 scopus 로고    scopus 로고
    • Applicability of neuro-fuzzy techniques in predicting ground water vulnerability: a sensitivity analysis
    • Dixon B. Applicability of neuro-fuzzy techniques in predicting ground water vulnerability: a sensitivity analysis. Journal of Hydrology 309 (2005) 17-38
    • (2005) Journal of Hydrology , vol.309 , pp. 17-38
    • Dixon, B.1
  • 14
    • 0343920857 scopus 로고    scopus 로고
    • Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method)
    • Doerfliger N., Jeannin P.Y., and Zwahlen F. Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environmental Geology 39 2 (1999) 165-176
    • (1999) Environmental Geology , vol.39 , Issue.2 , pp. 165-176
    • Doerfliger, N.1    Jeannin, P.Y.2    Zwahlen, F.3
  • 15
    • 0031104702 scopus 로고    scopus 로고
    • Transient groundwater flow simulation using a fuzzy set approach
    • Dou C., Woldt W., Dahab M., and Bogardi I. Transient groundwater flow simulation using a fuzzy set approach. Ground Water 35 2 (1997) 205-215
    • (1997) Ground Water , vol.35 , Issue.2 , pp. 205-215
    • Dou, C.1    Woldt, W.2    Dahab, M.3    Bogardi, I.4
  • 16
    • 0030616137 scopus 로고    scopus 로고
    • Numerical solute transport simulation using fuzzy set approach
    • Dou C., Woldt W., Bogardi I., and Dahab M. Numerical solute transport simulation using fuzzy set approach. Journal of Contaminant Hydrology 27 1-2 (1997) 107-126
    • (1997) Journal of Contaminant Hydrology , vol.27 , Issue.1-2 , pp. 107-126
    • Dou, C.1    Woldt, W.2    Bogardi, I.3    Dahab, M.4
  • 17
    • 0000794142 scopus 로고
    • Structure de certains aquifères karstiques d'après les résultats de travaux de forage
    • Drogue C. Structure de certains aquifères karstiques d'après les résultats de travaux de forage. Comptes Rendus al'Académie des Sciences, Paris, Série III 278 (1974) 2621-2624
    • (1974) Comptes Rendus al'Académie des Sciences, Paris, Série III , vol.278 , pp. 2621-2624
    • Drogue, C.1
  • 18
    • 25844462483 scopus 로고    scopus 로고
    • Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers
    • Einsield F. Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers. Journal of Hydrology 279 (2005) 312-321
    • (2005) Journal of Hydrology , vol.279 , pp. 312-321
    • Einsield, F.1
  • 20
    • 34848892157 scopus 로고    scopus 로고
    • Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse, South of France
    • Fleury P., Plagnes V., and Bakalowicz M. Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse, South of France. Journal of Hydrology 345 (2007) 38-49
    • (2007) Journal of Hydrology , vol.345 , pp. 38-49
    • Fleury, P.1    Plagnes, V.2    Bakalowicz, M.3
  • 21
    • 0027007868 scopus 로고
    • Rainfall forecasting in space and time using a neural network
    • French M., Krajewski W., and Cuykendall R. Rainfall forecasting in space and time using a neural network. Journal of Hydrology 137 (1992) 1-31
    • (1992) Journal of Hydrology , vol.137 , pp. 1-31
    • French, M.1    Krajewski, W.2    Cuykendall, R.3
  • 22
    • 33846452513 scopus 로고    scopus 로고
    • Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
    • 125-145
    • Goswami M., and O'Connor K.M. Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach. Journal of Hydrology 334 1-2 (2007) 20 125-145
    • (2007) Journal of Hydrology , vol.334 , Issue.1-2 , pp. 20
    • Goswami, M.1    O'Connor, K.M.2
  • 23
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Gwo-Fong L., and Lu-Hsien C. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , pp. 1-8
    • Gwo-Fong, L.1    Lu-Hsien, C.2
  • 24
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 (1994) 989-993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 27
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K., Gupta H.V., and Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 28
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalization beyond the calibration range
    • Imrie C.E., Durucan S., and Korre A. River flow prediction using artificial neural networks: generalization beyond the calibration range. Journal of Hydrology 233 (2000) 138-153
    • (2000) Journal of Hydrology , vol.233 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 29
    • 0026925677 scopus 로고
    • Self-learning fuzzy controllers based on temporal back propagation
    • Jang J.S.R. Self-learning fuzzy controllers based on temporal back propagation. IEEE Transactions on Neural Networks 3 5 (1992) 714-723
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 32
    • 0345446989 scopus 로고    scopus 로고
    • A model comparison of karst aquifer evolution for different matrix-flow formulations
    • Kaufman G. A model comparison of karst aquifer evolution for different matrix-flow formulations. Journal of Hydrology 283 (2003) 281-289
    • (2003) Journal of Hydrology , vol.283 , pp. 281-289
    • Kaufman, G.1
  • 33
    • 68049125343 scopus 로고    scopus 로고
    • Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer, Charente, France
    • Kurtulus B., and Razack M. Evaluation of the ability of an artificial neural network model to simulate the input-output responses of a large karstic aquifer: the La Rochefoucauld aquifer, Charente, France. Hydrogeology Journal 15 (2007) 241-254
    • (2007) Hydrogeology Journal , vol.15 , pp. 241-254
    • Kurtulus, B.1    Razack, M.2
  • 34
    • 0038010337 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using neural network technique: example in fractured porous media
    • Lallahem S., and Mania J. A non-linear rainfall-runoff model using neural network technique: example in fractured porous media. Mathematical and Computer Modeling 37 (2003) 1047-1061
    • (2003) Mathematical and Computer Modeling , vol.37 , pp. 1047-1061
    • Lallahem, S.1    Mania, J.2
  • 35
    • 43049086006 scopus 로고    scopus 로고
    • Synthèse hydrogéologique de l'aquifère de La Rochefoucauld: bilan des nouvelles connaissances (hydrogeological synthesis of La Rochefoucauld karst aquifer: review of new data)
    • Larocque M., and Razack M. Synthèse hydrogéologique de l'aquifère de La Rochefoucauld: bilan des nouvelles connaissances (hydrogeological synthesis of La Rochefoucauld karst aquifer: review of new data). Hydrogéologie 3 (1998) 35-45
    • (1998) Hydrogéologie , vol.3 , pp. 35-45
    • Larocque, M.1    Razack, M.2
  • 36
    • 0034887976 scopus 로고    scopus 로고
    • A four component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers
    • Lee E.S., and Krothe N.C. A four component mixing model for water in a karst terrain in south-central Indiana, USA. Using solute concentration and stable isotopes as tracers. Chemical Geology 179 (2001) 129-143
    • (2001) Chemical Geology , vol.179 , pp. 129-143
    • Lee, E.S.1    Krothe, N.C.2
  • 37
    • 0035986515 scopus 로고    scopus 로고
    • Diagnosing reservoir water quality using self organising maps and fuzzy theory
    • Lu R.S., and Lo S.L. Diagnosing reservoir water quality using self organising maps and fuzzy theory. Water Resources 36 9 (2002) 2265-2274
    • (2002) Water Resources , vol.36 , Issue.9 , pp. 2265-2274
    • Lu, R.S.1    Lo, S.L.2
  • 40
    • 0343197617 scopus 로고
    • Neural networks structures
    • Maren A.J., Harston C.T., and Pap R.M. (Eds), Academic Press Inc., USA
    • Maren A.J. Neural networks structures. In: Maren A.J., Harston C.T., and Pap R.M. (Eds). Handbook of Neural Computing and Applications (1990), Academic Press Inc., USA
    • (1990) Handbook of Neural Computing and Applications
    • Maren, A.J.1
  • 41
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall runoff models
    • Minns A.W., and Hall M.J. Artificial neural networks as rainfall runoff models. Hydrological Sciences Journal 41 3 (1996) 399-417
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 42
    • 0001362410 scopus 로고
    • The Levenberg-Marquardt algorithm: implementation and theory
    • Watson G.A. (Ed), Springer Verlag, Berlin-Heidelberg-New York
    • Moré J.J. The Levenberg-Marquardt algorithm: implementation and theory. In: Watson G.A. (Ed). Lecture Notes in Mathematics vol. 630 (1978), Springer Verlag, Berlin-Heidelberg-New York 105-116
    • (1978) Lecture Notes in Mathematics , vol.630 , pp. 105-116
    • Moré, J.J.1
  • 43
    • 0032960792 scopus 로고    scopus 로고
    • Obtaining interpretable fuzzy classification rules from medical data
    • Nauck D., and Kruse R. Obtaining interpretable fuzzy classification rules from medical data. Artificial Intelligence in Medicine 16 2 (1999) 149-169
    • (1999) Artificial Intelligence in Medicine , vol.16 , Issue.2 , pp. 149-169
    • Nauck, D.1    Kruse, R.2
  • 45
    • 0035889604 scopus 로고    scopus 로고
    • Fuzzy conceptual rainfall-runoff models
    • Ozelkan E.C., and Duckstein L. Fuzzy conceptual rainfall-runoff models. Journal of Hydrology 253 1-4 (2001) 41-68
    • (2001) Journal of Hydrology , vol.253 , Issue.1-4 , pp. 41-68
    • Ozelkan, E.C.1    Duckstein, L.2
  • 46
    • 23044459648 scopus 로고    scopus 로고
    • Suspended sediment estimation using neuro-fuzzy and neural network approaches
    • Özgür K. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal 50 4 (2006) 683-696
    • (2006) Hydrological Sciences Journal , vol.50 , Issue.4 , pp. 683-696
    • Özgür, K.1
  • 48
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkar M.P., Kothyari U.C., and Chaube U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , pp. 96-113
    • Rajurkar, M.P.1    Kothyari, U.C.2    Chaube, U.C.3
  • 49
    • 0033535432 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using an artificial neural network
    • Sajikumar N., and Thandaveswara B.S. A nonlinear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216 (1999) 32-55
    • (1999) Journal of Hydrology , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 50
    • 0031581547 scopus 로고    scopus 로고
    • Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach
    • Schulz K., and Huwe B. Water flow modeling in the unsaturated zone with imprecise parameters using a fuzzy approach. Journal of Hydrology 201 (1997) 211-229
    • (1997) Journal of Hydrology , vol.201 , pp. 211-229
    • Schulz, K.1    Huwe, B.2
  • 51
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural technique to rainfall-runoff modelling
    • Shamseldin A.Y. Application of a neural technique to rainfall-runoff modelling. Journal of Hydrology 199 (1997) 272-294
    • (1997) Journal of Hydrology , vol.199 , pp. 272-294
    • Shamseldin, A.Y.1
  • 52
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall runoff models
    • Shamseldin A.Y., O'Connor K.M., and Liang G.C. Methods for combining the outputs of different rainfall runoff models. Journal of Hydrology 199 (1997) 203-229
    • (1997) Journal of Hydrology , vol.199 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 54
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., and Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems Man and Cybernetics 15 1 (1985) 116-132
    • (1985) IEEE Transactions on Systems Man and Cybernetics , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 55
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-I: preliminary concepts
    • Task Committee A.S.C.E. Artificial neural networks in hydrology-I: preliminary concepts. Journal of Hydrologic Engineering 5 2 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 115-123
    • Task Committee, A.S.C.E.1
  • 56
    • 71749102025 scopus 로고    scopus 로고
    • Quantitative Approaches in Characterizing Karst Aquifers. USGS Karst Int. Gr. Proc
    • 01-4011, 164-166
    • Taylor, C., Greene, E, 2001. Quantitative Approaches in Characterizing Karst Aquifers. USGS Karst Int. Gr. Proc., Water-Resources Investigations Report 01-4011, 164-166.
    • (2001) Water-Resources Investigations Report
    • Taylor, C.1    Greene, E.2
  • 57
    • 33644891019 scopus 로고    scopus 로고
    • Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system
    • Tutmez B., Hatipoglu Z., and Kaymak U. Modelling electrical conductivity of groundwater using an adaptive neuro-fuzzy inference system. Computers & Geosciences 32 (2006) 421-433
    • (2006) Computers & Geosciences , vol.32 , pp. 421-433
    • Tutmez, B.1    Hatipoglu, Z.2    Kaymak, U.3
  • 58
    • 0035340544 scopus 로고    scopus 로고
    • A non-linear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system
    • Xiong L., Asaad Y., Shamseldin Y., and O'Connor K.M. A non-linear combination of the forecasts of rainfall-runoff models by the first order Takagi-Sugeno fuzzy system. Journal of Hydrology 245 1-4 (2001) 196-217
    • (2001) Journal of Hydrology , vol.245 , Issue.1-4 , pp. 196-217
    • Xiong, L.1    Asaad, Y.2    Shamseldin, Y.3    O'Connor, K.M.4
  • 59
    • 58849094959 scopus 로고    scopus 로고
    • Modelling level changes in lakes using neuro-fuzzy and artificial neural networks
    • Yarar A., Onucyildiz M., and Copty N. Modelling level changes in lakes using neuro-fuzzy and artificial neural networks. Journal of Hydrology 365 (2009) 329-334
    • (2009) Journal of Hydrology , vol.365 , pp. 329-334
    • Yarar, A.1    Onucyildiz, M.2    Copty, N.3
  • 60
    • 0034736047 scopus 로고    scopus 로고
    • Fuzzy multi-objective function for rainfall runoff model calibration
    • Yu P.S., and Yang T.C. Fuzzy multi-objective function for rainfall runoff model calibration. Journal of Hydrology 238 1-2 (2000) 1-14
    • (2000) Journal of Hydrology , vol.238 , Issue.1-2 , pp. 1-14
    • Yu, P.S.1    Yang, T.C.2
  • 62
    • 0035879564 scopus 로고    scopus 로고
    • Effects of spatial detail of soil information on watershed modeling
    • Zhu A.X., and Mackay D.S. Effects of spatial detail of soil information on watershed modeling. Journal of Hydrology 248 1-4 (2001) 54-77
    • (2001) Journal of Hydrology , vol.248 , Issue.1-4 , pp. 54-77
    • Zhu, A.X.1    Mackay, D.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.