메뉴 건너뛰기




Volumn 26, Issue 15, 2012, Pages 4467-4483

Monthly Precipitation Forecasting with a Neuro-Fuzzy Model

Author keywords

ANFIS; Input data selection; Long term forecast; Neuro fuzzy

Indexed keywords

ANFIS; DATA SETS; ENSEMBLE AVERAGING; FORWARD SELECTION; INPUT DATAS; INPUT VARIABLES; LONG-TERM FORECAST; NEURO-FUZZY; NEURO-FUZZY MODEL; PRECIPITATION FORECAST; PRECIPITATION FORECASTING; RAINFALL FORECASTS; RECORDING DATA; WRAPPER METHODS;

EID: 84868210863     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-012-0157-3     Document Type: Article
Times cited : (45)

References (27)
  • 1
    • 71149094442 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for drought forecasting
    • doi:10.1007/s00477-008-0288-5
    • Bacanli UG, Firat M, Dikbas F (2009) Adaptive neuro-fuzzy inference system for drought forecasting. Stoch Environ Res Risk Assess 23(8): 1143-1154. doi: 10. 1007/s00477-008-0288-5.
    • (2009) Stoch Environ Res Risk Assess , vol.23 , Issue.8 , pp. 1143-1154
    • Bacanli, U.G.1    Firat, M.2    Dikbas, F.3
  • 2
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • Bae D-H, Jeong DM, Kim G (2007) Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrol Sci J 52(1): 99-113.
    • (2007) Hydrol Sci J , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.-H.1    Jeong, D.M.2    Kim, G.3
  • 3
    • 0000437839 scopus 로고    scopus 로고
    • Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia
    • doi:10.1016/s0965-9978(99)00063-0
    • Bodri L, Cermak V (2000) Prediction of extreme precipitation using a neural network: application to summer flood occurrence in Moravia. Adv Eng Softw 31(5): 311-321. doi: 10. 1016/s0965-9978(99)00063-0.
    • (2000) Adv Eng Softw , vol.31 , Issue.5 , pp. 311-321
    • Bodri, L.1    Cermak, V.2
  • 4
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modelling of real-time reservoir operation
    • Chang L-C, Chang F-J (2001) Intelligent control for modelling of real-time reservoir operation. Hydrol Process 15: 1621-1634.
    • (2001) Hydrol Process , vol.15 , pp. 1621-1634
    • Chang, L.-C.1    Chang, F.-J.2
  • 5
    • 17844370548 scopus 로고    scopus 로고
    • Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves
    • Chang Y-T, Chang L-C, Chang F-J (2005) Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrol Process 19(7): 1431-1444.
    • (2005) Hydrol Process , vol.19 , Issue.7 , pp. 1431-1444
    • Chang, Y.-T.1    Chang, L.-C.2    Chang, F.-J.3
  • 6
    • 0001073047 scopus 로고    scopus 로고
    • Forecasting enrollments based on fuzzy time series
    • doi:10.1016/0165-0114(95)00220-0
    • Chen SM (1996) Forecasting enrollments based on fuzzy time series. Fuzzy Set Syst 81(3): 311-319. doi: 10. 1016/0165-0114(95)00220-0.
    • (1996) Fuzzy Set Syst , vol.81 , Issue.3 , pp. 311-319
    • Chen, S.M.1
  • 7
    • 0031898095 scopus 로고    scopus 로고
    • On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process
    • Franks SW, Gineste P, Beven KJ, Merot P (1998) On constraining the predictions of a distributed model: the incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resour Res 34(4): 787-797.
    • (1998) Water Resour Res , vol.34 , Issue.4 , pp. 787-797
    • Franks, S.W.1    Gineste, P.2    Beven, K.J.3    Merot, P.4
  • 8
    • 0031998129 scopus 로고    scopus 로고
    • Application example of neural networks for time series analysis: rainfall-runoff modeling
    • doi:10.1016/s0165-1684(97)00203-x
    • Furundzic D (1998) Application example of neural networks for time series analysis: rainfall-runoff modeling. Signal Process 64(3): 383-396. doi: 10. 1016/s0165-1684(97)00203-x.
    • (1998) Signal Process , vol.64 , Issue.3 , pp. 383-396
    • Furundzic, D.1
  • 9
    • 11144315254 scopus 로고    scopus 로고
    • Rainfall-runoff modelling using adaptive neuro-fuzzy systems
    • Gautam DK, Holz KP (2001) Rainfall-runoff modelling using adaptive neuro-fuzzy systems. J Hydroinf 3: 3-10.
    • (2001) J Hydroinf , vol.3 , pp. 3-10
    • Gautam, D.K.1    Holz, K.P.2
  • 10
    • 0036579528 scopus 로고    scopus 로고
    • Reservoir operation using the neural network and fuzzy systems for dam control and operation support
    • doi:10.1016/s0965-9978(02)00015-7
    • Hasebe M, Nagayama Y (2002) Reservoir operation using the neural network and fuzzy systems for dam control and operation support. Adv Eng Softw 33(5): 245-260. doi: 10. 1016/s0965-9978(02)00015-7.
    • (2002) Adv Eng Softw , vol.33 , Issue.5 , pp. 245-260
    • Hasebe, M.1    Nagayama, Y.2
  • 11
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain SK, Das A, Srivastava DK (1999) Application of ANN for reservoir inflow prediction and operation. J Water Resour Plann Manag 125(5): 263-271.
    • (1999) J Water Resour Plann Manag , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 12
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3): 665-685.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 14
    • 84855232291 scopus 로고    scopus 로고
    • Intermittent streamflow forecasting by using several data driven techniques
    • doi:10.1007/s11269-011-9926-7
    • Kisi O, Nia AM, Gosheh MG, Tajabadi MRJ, Ahmadi A (2012) Intermittent streamflow forecasting by using several data driven techniques. Water Resour Manag 26(2): 457-474. doi: 10. 1007/s11269-011-9926-7.
    • (2012) Water Resour Manag , vol.26 , Issue.2 , pp. 457-474
    • Kisi, O.1    Nia, A.M.2    Gosheh, M.G.3    Tajabadi, M.R.J.4    Ahmadi, A.5
  • 15
    • 84868207682 scopus 로고    scopus 로고
    • Korea Meteorological Administration, Accessed June 3 2009
    • Korea Meteorological Administration (2009) Long-Range Forecast: 1-month & 3-month Forecast. http://web. kma. go. kr/eng/lon/lon_01_01. jsp. Accessed June 3 2009.
    • (2009) Long-Range Forecast: 1-month & 3-month Forecast
  • 16
    • 0035104376 scopus 로고    scopus 로고
    • An application of artificial neural networks for rainfall forecasting
    • doi:10.1016/s0895-7177(00)00272-7
    • Luk KC, Ball JE, Sharma A (2001) An application of artificial neural networks for rainfall forecasting. Math Comput Model 33(6-7): 683-693. doi: 10. 1016/s0895-7177(00)00272-7.
    • (2001) Math Comput Model , vol.33 , Issue.6-7 , pp. 683-693
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 17
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May RJ, Maier HR, Dandy GC, Fernando TMKG (2008) Non-linear variable selection for artificial neural networks using partial mutual information. Environ Model Software 23(10-11): 1312-1326.
    • (2008) Environ Model Software , vol.23 , Issue.10-11 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.K.G.4
  • 18
    • 79956141353 scopus 로고    scopus 로고
    • Precipitation forecast using artificial neural networks in specific regions of Greece
    • doi:10.1007/s11269-011-9790-5
    • Moustris KP, Larissi IK, Nastos PT, Paliatsos AG (2011) Precipitation forecast using artificial neural networks in specific regions of Greece. Water Resour Manag 25(8): 1979-1993. doi: 10. 1007/s11269-011-9790-5.
    • (2011) Water Resour Manag , vol.25 , Issue.8 , pp. 1979-1993
    • Moustris, K.P.1    Larissi, I.K.2    Nastos, P.T.3    Paliatsos, A.G.4
  • 19
    • 19044383810 scopus 로고    scopus 로고
    • Short-term flood forecasting with a neurofuzzy model
    • doi:04010.01029/02004WR003562. doi:W04004
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS (2005) Short-term flood forecasting with a neurofuzzy model. Water Resour Res 41(4): W04004. doi: 04010. 01029/02004WR003562. doi: W04004.
    • (2005) Water Resour Res , vol.41 , Issue.4
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 20
    • 36649032078 scopus 로고    scopus 로고
    • Rainfall-runoff modeling through hybrid intelligent system
    • doi:doi:10.1029/2006WR004930
    • Nayak PC, Sudheer KP, Jain SK (2007) Rainfall-runoff modeling through hybrid intelligent system. Water Resour Res 43: W07415. doi: doi: 10. 1029/2006WR004930.
    • (2007) Water Resour Res , vol.43
    • Nayak, P.C.1    Sudheer, K.P.2    Jain, S.K.3
  • 21
    • 0030224015 scopus 로고    scopus 로고
    • Deriving a general operating policy for reservoirs using neural network
    • Raman H, Chandramouli V (1996) Deriving a general operating policy for reservoirs using neural network. J Water Resour Plann Manag 122(5): 342-347.
    • (1996) J Water Resour Plann Manag , vol.122 , Issue.5 , pp. 342-347
    • Raman, H.1    Chandramouli, V.2
  • 22
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • doi:10.1016/S0022-1694(98)00273-X
    • Sajikumar N, Thandaveswara BS (1999) A non-linear rainfall-runoff model using an artificial neural network. J Hydrol 216(1-2): 32-55. doi: 10. 1016/S0022-1694(98)00273-X.
    • (1999) J Hydrol , vol.216 , Issue.1-2 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 23
    • 84859108726 scopus 로고    scopus 로고
    • River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches
    • doi:10.1007/s11269-012-9982-7
    • Sanikhani H, Kisi O (2012) River flow estimation and forecasting by using two different adaptive neuro-fuzzy approaches. Water Resour Manag 26(6): 1715-1729. doi: 10. 1007/s11269-012-9982-7.
    • (2012) Water Resour Manag , vol.26 , Issue.6 , pp. 1715-1729
    • Sanikhani, H.1    Kisi, O.2
  • 24
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu C, Ouarda TBMJ (2008) Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. J Hydrol 349(1-2): 31-43.
    • (2008) J Hydrol , vol.349 , Issue.1-2 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 25
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Man Cybern 15(1): 116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 26
    • 84868207679 scopus 로고    scopus 로고
    • The International Research Institute for Climate and Society, Accessed July 20 2009
    • The International Research Institute for Climate and Society (2009) The Science and Practice of Seasonal Climate Forecasting at the IRI. http://iri. columbia. edu/climate/forecast/tutorial2/. Accessed July 20 2009.
    • (2009) The Science and Practice of Seasonal Climate Forecasting at the IRI
  • 27
    • 58849164849 scopus 로고    scopus 로고
    • Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey
    • Yurdusev MA, Firat M (2009) Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey. J Hydrol 365(3-4): 225-234.
    • (2009) J Hydrol , vol.365 , Issue.3-4 , pp. 225-234
    • Yurdusev, M.A.1    Firat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.