-
1
-
-
84891867283
-
RodehefferMS. Weighing in on Adipocyte Precursors
-
PMID: 24239569
-
Berry R, Jeffery E, RodehefferMS. Weighing in on Adipocyte Precursors. Cell Metab 2014; 19:8-20; PMID: 24239569; http://dx.doi.org/10.1016/j.cmet.2013.10.003
-
(2014)
Cell Metab
, vol.19
, pp. 8-20
-
-
Berry, R.1
Jeffery, E.2
-
2
-
-
70350228797
-
Depotspecific differences in adipogenic progenitor abundance and proliferative response to high-fat diet
-
PMID:19658193
-
Joe AW, Yi L, Even Y, Vogl AW, Rossi FM. Depotspecific differences in adipogenic progenitor abundance and proliferative response to high-fat diet. Stem Cells 2009; 27:2563-70; PMID:19658193; http://dx.doi.org/10.1002/stem.190
-
(2009)
Stem Cells
, vol.27
, pp. 2563-2570
-
-
Joe, A.W.1
Yi, L.2
Even, Y.3
Vogl, A.W.4
Rossi, F.M.5
-
3
-
-
79952304762
-
Rapid cellular turnover in adipose tissue
-
PMID:21407813
-
Rigamonti A, Brennand K, Lau F, Cowan CA. Rapid cellular turnover in adipose tissue. PLoS One 2011; 6: e17637; PMID:21407813; http://dx.doi.org/10.1371/journal.pone.0017637
-
(2011)
Plos One
, vol.6
-
-
Rigamonti, A.1
Brennand, K.2
Lau, F.3
Cowan, C.A.4
-
4
-
-
44849132591
-
Dynamics of fat cell turnover in humans
-
PMID:18454136
-
Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T, et al. Dynamics of fat cell turnover in humans. Nature 2008; 453:783-7; PMID:18454136; http://dx.doi.org/10.1038/nature06902
-
(2008)
Nature
, vol.453
, pp. 783-787
-
-
Spalding, K.L.1
Arner, E.2
Westermark, P.O.3
Bernard, S.4
Buchholz, B.A.5
Bergmann, O.6
Blomqvist, L.7
Hoffstedt, J.8
Näslund, E.9
Britton, T.10
-
5
-
-
84883467905
-
Identification of an adipogenic niche for adipose tissue remodeling and restoration
-
PMID: 24011071
-
Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab 2013; 18:355-67; PMID: 24011071; http://dx.doi.org/10.1016/j.cmet.2013.08.003
-
(2013)
Cell Metab
, vol.18
, pp. 355-367
-
-
Lee, Y.H.1
Petkova, A.P.2
Granneman, J.G.3
-
6
-
-
84887502374
-
Tracking adipogenesis during white adipose tissue development, expansion and regeneration
-
PMID:23995282
-
Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 2013; 19:1338-44; PMID:23995282; http://dx.doi.org/10.1038/nm.3324
-
(2013)
Nat Med
, vol.19
, pp. 1338-1344
-
-
Wang, Q.A.1
Tao, C.2
Gupta, R.K.3
Scherer, P.E.4
-
7
-
-
84878532462
-
Adipose tissue dysfunction contributes to obesity related metabolic diseases
-
PMID:23731879
-
Blüher M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab 2013; 27:163-77; PMID:23731879; http://dx.doi.org/10.1016/j.beem.2013.02.005
-
(2013)
Best Pract Res Clin Endocrinol Metab
, vol.27
, pp. 163-177
-
-
Blüher, M.1
-
8
-
-
77949303529
-
Adipose tissue inflammation: Are small or large fat cells to blame?
-
PMID:19937224
-
Hauner H. Adipose tissue inflammation: are small or large fat cells to blame? Diabetologia 2010; 53:223-5; PMID:19937224; http://dx.doi.org/10.1007/s00125-009-1605-3
-
(2010)
Diabetologia
, vol.53
, pp. 223-225
-
-
Hauner, H.1
-
9
-
-
20444471451
-
Secretory factors from human adipose tissue and their functional role
-
PMID:15960861
-
Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc 2005; 64: 163-9; PMID:15960861; http://dx.doi.org/10.1079/PNS2005428
-
(2005)
Proc Nutr Soc
, vol.64
, pp. 163-169
-
-
Hauner, H.1
-
10
-
-
84891751641
-
HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high-fat feeding
-
PMID:24101673
-
Chatterjee TK, Basford JE, Knoll E, Tong WS, Blanco V, Blomkalns AL, Rudich S, Lentsch AB, Hui DY, Weintraub NL. HDAC9 knockout mice are protected from adipose tissue dysfunction and systemic metabolic disease during high-fat feeding. Diabetes 2014; 63:176-87; PMID:24101673; http://dx.doi.org/10.2337/db13-1148
-
(2014)
Diabetes
, vol.63
, pp. 176-187
-
-
Chatterjee, T.K.1
Basford, J.E.2
Knoll, E.3
Tong, W.S.4
Blanco, V.5
Blomkalns, A.L.6
Rudich, S.7
Lentsch, A.B.8
Hui, D.Y.9
Weintraub, N.L.10
-
11
-
-
84875165863
-
Epigenetic programming and reprogramming during development
-
PMID:23463313
-
Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 2013; 20:282-9; PMID:23463313; http://dx.doi.org/10.1038/nsmb.2489
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 282-289
-
-
Cantone, I.1
Fisher, A.G.2
-
12
-
-
79960972108
-
Histone deacetylase 9 is a negative regulator of adipogenic differentiation
-
PMID:21680747
-
Chatterjee TK, Idelman G, Blanco V, Blomkalns AL, Piegore MG Jr., Weintraub DS, Kumar S, Rajsheker S, Manka D, Rudich SM, et al. Histone deacetylase 9 is a negative regulator of adipogenic differentiation. J Biol Chem 2011; 286:27836-47; PMID:21680747; http://dx.doi.org/10.1074/jbc.M111.262964
-
(2011)
J Biol Chem
, vol.286
, pp. 27836-27847
-
-
Chatterjee, T.K.1
Idelman, G.2
Blanco, V.3
Blomkalns, A.L.4
Piegore, M.G.5
Weintraub, D.S.6
Kumar, S.7
Rajsheker, S.8
Manka, D.9
Rudich, S.M.10
-
13
-
-
79953195120
-
Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2
-
PMID:21247904
-
Chen YH, Yeh FL, Yeh SP, Ma HT, Hung SC, Hung MC, Li LY. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor gamma-2. J Biol Chem 2011; 286:10671-80; PMID:21247904; http://dx.doi.org/10.1074/jbc.M110.199612
-
(2011)
J Biol Chem
, vol.286
, pp. 10671-10680
-
-
Chen, Y.H.1
Yeh, F.L.2
Yeh, S.P.3
Ma, H.T.4
Hung, S.C.5
Hung, M.C.6
Li, L.Y.7
-
14
-
-
84891073800
-
Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor
-
PMID: 24268577
-
Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, et al. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 2013; 52:769-82; PMID: 24268577; http://dx.doi.org/10.1016/j.molcel.2013.10.022
-
(2013)
Mol Cell
, vol.52
, pp. 769-782
-
-
Sun, Z.1
Feng, D.2
Fang, B.3
Mullican, S.E.4
You, S.H.5
Lim, H.W.6
Everett, L.J.7
Nabel, C.S.8
Li, Y.9
Selvakumaran, V.10
-
15
-
-
84875831123
-
Brown and white fat: From signaling to disease
-
PMID:23561705
-
Herzig S, Wolfrum C. Brown and white fat: from signaling to disease. Biochim Biophys Acta 2013; 1831:895; PMID:23561705; http://dx.doi.org/10. 1016/j.bbalip.2013.03.009
-
(2013)
Biochim Biophys Acta
, vol.1831
, pp. 895
-
-
Herzig, S.1
Wolfrum, C.2
-
16
-
-
84873518501
-
Adaptive thermogenesis in adipocytes: Is beige the new brown?
-
PMID:23388824
-
Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev 2013; 27:234-50; PMID:23388824; http://dx.doi.org/10.1101/gad.211649.112
-
(2013)
Genes Dev
, vol.27
, pp. 234-250
-
-
Wu, J.1
Cohen, P.2
Spiegelman, B.M.3
-
17
-
-
64349095231
-
Cold-activated brown adipose tissue in healthy men
-
PMID:19357405
-
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360:1500-8; PMID:19357405; http://dx.doi.org/10.1056/NEJMoa0808718
-
(2009)
N Engl J Med
, vol.360
, pp. 1500-1508
-
-
Van Marken Lichtenbelt, W.D.1
Vanhommerig, J.W.2
Smulders, N.M.3
Drossaerts, J.M.4
Kemerink, G.J.5
Bouvy, N.D.6
Schrauwen, P.7
Teule, G.J.8
-
18
-
-
79952089254
-
Brown adipose tissue in morbidly obese subjects
-
PMID:21390318
-
Vijgen GH, Bouvy ND, Teule GJ, Brans B, Schrauwen P, van Marken Lichtenbelt WD. Brown adipose tissue in morbidly obese subjects. PLoS One 2011; 6:e17247; PMID:21390318; http://dx.doi.org/10.1371/journal. pone.0017247
-
(2011)
Plos One
, vol.6
-
-
Vijgen, G.H.1
Bouvy, N.D.2
Teule, G.J.3
Brans, B.4
Schrauwen, P.5
Van Marken Lichtenbelt, W.D.6
-
19
-
-
84862495484
-
Increase in brown adipose tissue activity after weight loss in morbidly obese subjects
-
PMID:22535970
-
Vijgen GH, Bouvy ND, Teule GJ, Brans B, Hoeks J, Schrauwen P, van Marken Lichtenbelt WD. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2012; 97:E1229-33; PMID:22535970; http://dx.doi.org/10.1210/jc.2012-1289
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. E1229-E1233
-
-
Vijgen, G.H.1
Bouvy, N.D.2
Teule, G.J.3
Brans, B.4
Hoeks, J.5
Schrauwen, P.6
Van Marken Lichtenbelt, W.D.7
-
20
-
-
84875367849
-
Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat
-
PMID:23485971
-
Schulz TJ, Huang P, Huang TL, Xue R, McDougall LE, Townsend KL, Cypess AM, Mishina Y, Gussoni E, Tseng YH. Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 2013; 495:379-83; PMID:23485971; http://dx.doi.org/10.1038/nature11943
-
(2013)
Nature
, vol.495
, pp. 379-383
-
-
Schulz, T.J.1
Huang, P.2
Huang, T.L.3
Xue, R.4
McDougall, L.E.5
Townsend, K.L.6
Cypess, A.M.7
Mishina, Y.8
Gussoni, E.9
Tseng, Y.H.10
-
21
-
-
84859465056
-
In vivo identification of bipotential adipocyte progenitors recruited by b3-adrenoceptor activation and high-fat feeding
-
PMID: 22482730
-
Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by b3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15:480-91; PMID: 22482730; http://dx.doi.org/10.1016/j.cmet.2012.03.009
-
(2012)
Cell Metab
, vol.15
, pp. 480-491
-
-
Lee, Y.H.1
Petkova, A.P.2
Mottillo, E.P.3
Granneman, J.G.4
-
22
-
-
84880679205
-
Fat cells directly sense temperature to activate thermogenesis
-
PMID:23818608
-
Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP, Spiegelman BM. Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci U S A 2013; 110:12480-5; PMID:23818608; http://dx.doi.org/10.1073/pnas.1310261110
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 12480-12485
-
-
Ye, L.1
Wu, J.2
Cohen, P.3
Kazak, L.4
Khandekar, M.J.5
Jedrychowski, M.P.6
Zeng, X.7
Gygi, S.P.8
Spiegelman, B.M.9
-
23
-
-
84879993961
-
Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature
-
PMID:23780370
-
Chen KY, Brychta RJ, Linderman JD, Smith S, Courville A, Dieckmann W, Herscovitch P, Millo CM, Remaley A, Lee P, et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J Clin Endocrinol Metab 2013; 98:E1218-23; PMID:23780370; http://dx.doi.org/10.1210/jc.2012-4213
-
(2013)
J Clin Endocrinol Metab
, vol.98
, pp. E1218-E1223
-
-
Chen, K.Y.1
Brychta, R.J.2
Linderman, J.D.3
Smith, S.4
Courville, A.5
Dieckmann, W.6
Herscovitch, P.7
Millo, C.M.8
Remaley, A.9
Lee, P.10
-
24
-
-
84870359606
-
Treating diabetes and obesity with an FGF21-mimetic antibody activating the bKlotho/FGFR1c receptor complex
-
ra153PMID:23197570
-
Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS, Nuanmanee N, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the bKlotho/FGFR1c receptor complex. Sci Transl Med 2012; 4:ra153; PMID:23197570; http://dx.doi.org/10.1126/scitranslmed.3004690
-
(2012)
Sci Transl Med
, vol.4
-
-
Foltz, I.N.1
Hu, S.2
King, C.3
Wu, X.4
Yang, C.5
Wang, W.6
Weiszmann, J.7
Stevens, J.8
Chen, J.S.9
Nuanmanee, N.10
-
25
-
-
84893157935
-
Commentary: FGF21 holds promises for treating obesity-related insulin resistance and hepatosteatosis
-
PMID:24248463
-
Alisi A, Panera N, Nobili V. Commentary: FGF21 holds promises for treating obesity-related insulin resistance and hepatosteatosis. Endocrinology 2014; 155:343-6; PMID:24248463; http://dx.doi.org/10.1210/en.2013-1828
-
(2014)
Endocrinology
, vol.155
, pp. 343-346
-
-
Alisi, A.1
Panera, N.2
Nobili, V.3
-
26
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
PMID:24011069
-
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18:333-40; PMID:24011069; http://dx. doi.org/10.1016/j.cmet.2013.08.005
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
27
-
-
77956519052
-
Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease
-
PMID:20624171
-
Yilmaz Y, Eren F, Yonal O, Kurt R, Aktas B, Celikel CA, Ozdogan O, Imeryuz N, Kalayci C, Avsar E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 2010; 40:887-92; PMID:20624171; http://dx.doi.org/10.1111/j.1365-2362.2010.02338.x
-
(2010)
Eur J Clin Invest
, vol.40
, pp. 887-892
-
-
Yilmaz, Y.1
Eren, F.2
Yonal, O.3
Kurt, R.4
Aktas, B.5
Celikel, C.A.6
Ozdogan, O.7
Imeryuz, N.8
Kalayci, C.9
Avsar, E.10
-
28
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
PMID: 20197053
-
Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010; 11:206-12; PMID: 20197053; http://dx.doi.org/10.1016/j.cmet.2010.02.001
-
(2010)
Cell Metab
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
29
-
-
84896710569
-
Functional thermogenic beige adipogenesis is inducible in human neck fat
-
PMID:23736373
-
Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obes 2014; 38:170-6; PMID:23736373; http://dx.doi.org/10.1038/ijo.2013.82
-
(2014)
Int J Obes
, vol.38
, pp. 170-176
-
-
Lee, P.1
Werner, C.D.2
Kebebew, E.3
Celi, F.S.4
-
30
-
-
84863012022
-
FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis
-
PMID:22302939
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, et al. FGF21 regulates PGC-1a and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012; 26:271-81; PMID:22302939; http://dx.doi.org/10.1101/gad.177857.111
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
-
31
-
-
84878982912
-
FGF21 mediates the lipid metabolism response to amino acid starvation
-
PMID: 23661803
-
De Sousa-Coelho AL, Relat J, Hondares E, Pérez-Martí A, Ribas F, Villarroya F, Marrero PF, Haro D. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res 2013; 54:1786-97; PMID: 23661803; http://dx.doi.org/10.1194/jlr.M033415
-
(2013)
J Lipid Res
, vol.54
, pp. 1786-1797
-
-
De Sousa-Coelho, A.L.1
Relat, J.2
Hondares, E.3
Pérez-Martí, A.4
Ribas, F.5
Villarroya, F.6
Marrero, P.F.7
Haro, D.8
-
32
-
-
70450171036
-
The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism
-
PMID:19531026
-
Cuevas-Ramos D, Almeda-Valdes P, Aguilar-Salinas CA, Cuevas-Ramos G, Cuevas-Sosa AA, Gomez-Perez FJ. The role of fibroblast growth factor 21 (FGF21) on energy balance, glucose and lipid metabolism. Curr Diabetes Rev 2009; 5:216-20; PMID:19531026; http://dx.doi.org/10.2174/157339909789804396
-
(2009)
Curr Diabetes Rev
, vol.5
, pp. 216-220
-
-
Cuevas-Ramos, D.1
Almeda-Valdes, P.2
Aguilar-Salinas, C.A.3
Cuevas-Ramos, G.4
Cuevas-Sosa, A.A.5
Gomez-Perez, F.J.6
-
33
-
-
80052033268
-
FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology
-
981315PMID:21331285
-
Murata Y, Konishi M, Itoh N. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology. J Nutr Metab 2011; 2011:981315; PMID:21331285; http://dx.doi.org/10.1155/2011/981315
-
(2011)
J Nutr Metab 2011
-
-
Murata, Y.1
Konishi, M.2
Itoh, N.3
-
34
-
-
84869106554
-
Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue
-
PMID:23069623
-
Galmozzi A, Mitro N, Ferrari A, Gers E, Gilardi F, Godio C, Cermenati G, Gualerzi A, Donetti E, Rotili D, et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 2013; 62:732-42; PMID:23069623; http://dx.doi.org/10.2337/db12-0548
-
(2013)
Diabetes
, vol.62
, pp. 732-742
-
-
Galmozzi, A.1
Mitro, N.2
Ferrari, A.3
Gers, E.4
Gilardi, F.5
Godio, C.6
Cermenati, G.7
Gualerzi, A.8
Donetti, E.9
Rotili, D.10
-
35
-
-
36849004821
-
Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases
-
PMID: 17956988
-
Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfí A, et al. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 2007; 104:17335-40; PMID: 17956988; http://dx.doi.org/10.1073/pnas.0706487104
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 17335-17340
-
-
Lahm, A.1
Paolini, C.2
Pallaoro, M.3
Nardi, M.C.4
Jones, P.5
Neddermann, P.6
Sambucini, S.7
Bottomley, M.J.8
Lo Surdo, P.9
Carfí, A.10
-
36
-
-
0035912794
-
The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis
-
PMID:11390982
-
Zhang CL, McKinsey TA, Olson EN. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A 2001; 98:7354-9; PMID:11390982; http://dx.doi.org/10.1073/pnas.131198498
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 7354-7359
-
-
Zhang, C.L.1
McKinsey, T.A.2
Olson, E.N.3
-
37
-
-
0035808460
-
Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor
-
PMID:11022042
-
Zhang CL, McKinsey TA, Lu JR, Olson EN. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 2001; 276:35-9; PMID:11022042; http://dx.doi.org/10.1074/jbc. M007364200
-
(2001)
J Biol Chem
, vol.276
, pp. 35-39
-
-
Zhang, C.L.1
McKinsey, T.A.2
Lu, J.R.3
Olson, E.N.4
-
38
-
-
0033568492
-
MEF-2 function is modified by a novel corepressor, MITR
-
PMID:10487760
-
Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ. MEF-2 function is modified by a novel corepressor, MITR. EMBO J 1999; 18:5085-98; PMID:10487760; http://dx.doi.org/10.1093/emboj/18.18.5085
-
(1999)
EMBO J
, vol.18
, pp. 5085-5098
-
-
Sparrow, D.B.1
Miska, E.A.2
Langley, E.3
Reynaud-Deonauth, S.4
Kotecha, S.5
Towers, N.6
Spohr, G.7
Kouzarides, T.8
Mohun, T.J.9
-
39
-
-
62149105212
-
A role of DNA-PK for the metabolic gene regulation in response to insulin
-
PMID: 19303849
-
Wong RH, Chang I, Hudak CS, Hyun S, Kwan HY, Sul HS. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell 2009; 136:1056-72; PMID: 19303849; http://dx.doi.org/10.1016/j.cell.2008.12.040
-
(2009)
Cell
, vol.136
, pp. 1056-1072
-
-
Wong, R.H.1
Chang, I.2
Hudak, C.S.3
Hyun, S.4
Kwan, H.Y.5
Sul, H.S.6
-
40
-
-
14544273663
-
Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression
-
PMID:15711539
-
M_ejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 2005; 8:313-21; PMID:15711539; http://dx.doi.org/10.1038/nn1408
-
(2005)
Nat Neurosci
, vol.8
, pp. 313-321
-
-
Ejat, A.1
Ramond, F.2
Bassel-Duby, R.3
Khochbin, S.4
Olson, E.N.5
Schaeffer, L.6
-
41
-
-
78751537137
-
Histone deacetylase 9 activates gamma-globin gene expression in primary erythroid cells
-
PMID:21078662
-
Muralidhar SA, Ramakrishnan V, Kalra IS, Li W, Pace BS. Histone deacetylase 9 activates gamma-globin gene expression in primary erythroid cells. J Biol Chem 2011; 286:2343-53; PMID:21078662; http://dx.doi.org/10.1074/jbc.M110.115725
-
(2011)
J Biol Chem
, vol.286
, pp. 2343-2353
-
-
Muralidhar, S.A.1
Ramakrishnan, V.2
Kalra, I.S.3
Li, W.4
Pace, B.S.5
-
42
-
-
77951863880
-
Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons
-
PMID:20525066
-
Sugo N, Oshiro H, Takemura M, Kobayashi T, Kohno Y, Uesaka N, Song WJ, Yamamoto N. Nucleocytoplasmic translocation of HDAC9 regulates gene expression and dendritic growth in developing cortical neurons. Eur J Neurosci 2010; 31:1521-32; PMID:20525066
-
(2010)
Eur J Neurosci
, vol.31
, pp. 1521-1532
-
-
Sugo, N.1
Oshiro, H.2
Takemura, M.3
Kobayashi, T.4
Kohno, Y.5
Uesaka, N.6
Song, W.J.7
Yamamoto, N.8
-
43
-
-
80051693245
-
Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity
-
PMID:21708950
-
Yan K, Cao Q, Reilly CM, Young NL, Garcia BA, Mishra N. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity. J Biol Chem 2011; 286:28833-43; PMID:21708950; http://dx.doi.org/10.1074/jbc.M111.233932
-
(2011)
J Biol Chem
, vol.286
, pp. 28833-28843
-
-
Yan, K.1
Cao, Q.2
Reilly, C.M.3
Young, N.L.4
Garcia, B.A.5
Mishra, N.6
-
44
-
-
78649848838
-
Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein
-
PMID:20947501
-
Yuan Z, Peng L, Radhakrishnan R, Seto E. Histone deacetylase 9 (HDAC9) regulates the functions of the ATDC (TRIM29) protein. J Biol Chem 2010; 285:39329-38; PMID:20947501; http://dx.doi.org/10.1074/jbc.M110.179333
-
(2010)
J Biol Chem
, vol.285
, pp. 39329-39338
-
-
Yuan, Z.1
Peng, L.2
Radhakrishnan, R.3
Seto, E.4
-
45
-
-
77949877704
-
Highthroughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma
-
PMID:20165882
-
Archer KJ, Mas VR, Maluf DG, Fisher RA. Highthroughput assessment of CpG site methylation for distinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma. Mol Genet Genomics 2010; 283:341-9; PMID:20165882; http://dx.doi.org/10.1007/s00438-010-0522-y
-
(2010)
Mol Genet Genomics
, vol.283
, pp. 341-349
-
-
Archer, K.J.1
Mas, V.R.2
Maluf, D.G.3
Fisher, R.A.4
-
46
-
-
80755168896
-
Specific control of pancreatic endocrine b-and d-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC 9
-
PMID:21953612
-
Lenoir O, Flosseau K, Ma FX, Blondeau B, Mai A, Bassel-Duby R, Ravassard P, Olson EN, Haumaitre C, Scharfmann R. Specific control of pancreatic endocrine b-and d-cell mass by class IIa histone deacetylases HDAC4, HDAC5, and HDAC 9. Diabetes 2011; 60:2861-71; PMID:21953612; http://dx.doi.org/10.2337/db11-0440
-
(2011)
Diabetes
, vol.60
, pp. 2861-2871
-
-
Lenoir, O.1
Flosseau, K.2
Ma, F.X.3
Blondeau, B.4
Mai, A.5
Bassel-Duby, R.6
Ravassard, P.7
Olson, E.N.8
Haumaitre, C.9
Scharfmann, R.10
-
47
-
-
0036787922
-
Association of class II histone deacetylases with heterochromatin protein 1: Potential role for histone methylation in control of muscle differentiation
-
PMID:12242305
-
Zhang CL, McKinsey TA, Olson EN. Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 2002; 22:7302-12; PMID:12242305; http://dx.doi.org/10.1128/MCB.22.20.7302-7312.2002
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7302-7312
-
-
Zhang, C.L.1
McKinsey, T.A.2
Olson, E.N.3
-
48
-
-
80053601510
-
Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells
-
PMID:21798734
-
Beier UH, Akimova T, Liu Y, Wang L, Hancock WW. Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells. Curr Opin Immunol 2011; 23:670-8; PMID:21798734; http://dx.doi.org/10.1016/j.coi.2011.07.002
-
(2011)
Curr Opin Immunol
, vol.23
, pp. 670-678
-
-
Beier, U.H.1
Akimova, T.2
Liu, Y.3
Wang, L.4
Hancock, W.W.5
-
49
-
-
84876830806
-
Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis
-
PMID:23449258
-
Markus HS, Mäkeläa KM, Bevan S, Raitoharju E, Oksala N, Bis JC, O’Donnell C, Hainsworth A, Lehtimäki T. Evidence HDAC9 genetic variant associated with ischemic stroke increases risk via promoting carotid atherosclerosis. Stroke 2013; 44:1220-5; PMID:23449258; http://dx.doi.org/10.1161/STROKEAHA.111.000217
-
(2013)
Stroke
, vol.44
, pp. 1220-1225
-
-
Markus, H.S.1
Mäkeläa, K.M.2
Bevan, S.3
Raitoharju, E.4
Oksala, N.5
Bis, J.C.6
O’Donnell, C.7
Hainsworth, A.8
Lehtimäki, T.9
-
50
-
-
84863393715
-
International Stroke Genetics Consortium (ISGC); Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke
-
PMID:22306652
-
Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, Jackson CA, Traylor M, Strange A, Su Z, et al.; International Stroke Genetics Consortium (ISGC); Wellcome Trust Case Control Consortium 2 (WTCCC2). Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet 2012; 44:328-33; PMID:22306652; http://dx.doi.org/10.1038/ng.1081
-
(2012)
Nat Genet
, vol.44
, pp. 328-333
-
-
Bellenguez, C.1
Bevan, S.2
Gschwendtner, A.3
Spencer, C.C.4
Burgess, A.I.5
Pirinen, M.6
Jackson, C.A.7
Traylor, M.8
Strange, A.9
Su, Z.10
|