메뉴 건너뛰기




Volumn 37, Issue 3, 2016, Pages 360-379

Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data

Author keywords

activity identification; energy cost estimation; feature representation; machine learning

Indexed keywords

ACCELEROMETERS; ARTIFICIAL INTELLIGENCE; COST BENEFIT ANALYSIS; LEARNING ALGORITHMS; LEARNING SYSTEMS; TIME SERIES; WEARABLE SENSORS;

EID: 84961146387     PISSN: 09673334     EISSN: 13616579     Source Type: Journal    
DOI: 10.1088/0967-3334/37/3/360     Document Type: Article
Times cited : (26)

References (55)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • 37-6
    • Aha D and Kibler D 1991 Instance-based learning algorithms Mach. Learn. 6 37-6
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-46
    • Aha, D.1    Kibler, D.2
  • 3
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Pervasive Computing (Berlin: Springer)
    • Bao L and Intille S S 2004 Activity recognition from user-annotated acceleration data Pervasive Computing (Lecture Notes in Computer Science) vol 3001 (Berlin: Springer) pp 1-17
    • (2004) Lecture Notes in Computer Science , vol.3001 , pp. 1-17
    • Bao, L.1    Intille, S.S.2
  • 4
    • 9944239444 scopus 로고    scopus 로고
    • Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland
    • 2204-11
    • Barengo N C, Hu G, Lakka T A, Pekkarinen H, Nissinen A and Tuomilehto J 2004 Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland Eur. Heart J. 25 2204-11
    • (2004) Eur. Heart J. , vol.25 , pp. 2204-2211
    • Barengo, N.C.1    Hu, G.2    Lakka, T.A.3    Pekkarinen, H.4    Nissinen, A.5    Tuomilehto, J.6
  • 6
    • 69749105447 scopus 로고    scopus 로고
    • Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer
    • 655-61
    • Bonomi A G, Plasqui G, Goris A H C and Westerterp K R 2009 Improving assessment of daily energy expenditure by identifying types of physical activity with a single accelerometer J. Appl. Physiol. 107 655-61
    • (2009) J. Appl. Physiol. , vol.107 , pp. 655-661
    • Bonomi, A.G.1    Plasqui, G.2    Goris, A.H.C.3    Westerterp, K.R.4
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • 123-40
    • Breiman L 1996 Bagging predictors Mach. Learn. 24 123-40
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 8
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 5-32
    • Breiman L 2001 Random forests Mach. Learn. 45 5-32
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 33745586818 scopus 로고    scopus 로고
    • Best practice methods to apply to measurement of resting metabolic rate in adults: A systematic review
    • 881-903
    • Compher C, Frankenfield D, Keim N and Roth-Yousey L 2006 Best practice methods to apply to measurement of resting metabolic rate in adults: a systematic review J. Am. Diet Assoc. 106 881-903
    • (2006) J. Am. Diet Assoc. , vol.106 , pp. 881-903
    • Compher, C.1    Frankenfield, D.2    Keim, N.3    Roth-Yousey, L.4
  • 11
    • 33646370992 scopus 로고    scopus 로고
    • A novel method for using accelerometer data to predict energy expenditure
    • PMID: 16322367
    • Crouter S E, Clowers K G and Bassett D R Jr 2006 A novel method for using accelerometer data to predict energy expenditure J. Appl. Physiol. 100 1324-31 (PMID: 16322367)
    • (2006) J. Appl. Physiol. , vol.100 , Issue.4 , pp. 1324-1331
    • Crouter, S.E.1    Clowers, K.G.2    Bassett, D.R.3
  • 12
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Berlin: Springer
    • Dietterich T G 2000 Ensemble methods in machine learning Multiple Classifier Systems (Berlin: Springer) pp 1-15
    • (2000) Multiple Classifier Systems , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 13
    • 39449090035 scopus 로고    scopus 로고
    • Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions
    • 20-6
    • Ermes M, Parkka J, Mantyjarvi J and Korhonen I 2008 Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions IEEE Trans. Inf. Tech. Biomed. 12 20-6
    • (2008) IEEE Trans. Inf. Tech. Biomed. , vol.12 , pp. 20-26
    • Ermes, M.1    Parkka, J.2    Mantyjarvi, J.3    Korhonen, I.4
  • 17
    • 0033817363 scopus 로고    scopus 로고
    • Validity of accelerometry for the assessment of moderate intensity physical activity in the field
    • S442-9
    • Hendelman D, Miller K, Baggett C, Debold E and Freedson P 2000 Validity of accelerometry for the assessment of moderate intensity physical activity in the field Med. Sci. Sports Exerc. 32 S442-9
    • (2000) Med. Sci. Sports Exerc. , vol.32 , pp. S442-S449
    • Hendelman, D.1    Miller, K.2    Baggett, C.3    Debold, E.4    Freedson, P.5
  • 19
    • 0026058458 scopus 로고
    • Hospital-associated deconditioning and dysfunction
    • 220-2
    • Hoenig H M and Rubenstein L Z 1991 Hospital-associated deconditioning and dysfunction J. Am. Geriatr. Soc. 39 220-2
    • (1991) J. Am. Geriatr. Soc. , vol.39 , pp. 220-222
    • Hoenig, H.M.1    Rubenstein, L.Z.2
  • 23
    • 84958052891 scopus 로고    scopus 로고
    • Using dynamic time warping distances as features for improved time series classification
    • Kate R J 2015 Using dynamic time warping distances as features for improved time series classification Data Min. Knowl. Disc. (doi:10.1007/s10618-015-0418-x)
    • (2015) Data Min. Knowl. Disc.
    • Kate, R.J.1
  • 28
    • 84868624588 scopus 로고    scopus 로고
    • Rotation-invariant similarity in time series using bag-of-patterns representation
    • 287-315
    • Lin J, Khade R and Li Y 2012 Rotation-invariant similarity in time series using bag-of-patterns representation J. Intell. Inf. Syst. 39 287-315
    • (2012) J. Intell. Inf. Syst. , vol.39 , pp. 287-315
    • Lin, J.1    Khade, R.2    Li, Y.3
  • 30
    • 79651473592 scopus 로고    scopus 로고
    • A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations
    • 187-201
    • Lyden K, Kozey S L, Staudenmeyer J W and Freedson P S 2011 A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations Eur. J. Appl. Physiol. 111 187-201
    • (2011) Eur. J. Appl. Physiol. , vol.111 , pp. 187-201
    • Lyden, K.1    Kozey, S.L.2    Staudenmeyer, J.W.3    Freedson, P.S.4
  • 31
    • 20544465741 scopus 로고    scopus 로고
    • Calibration of accelerormeter output for adults
    • S512-22
    • Matthews C E 2005 Calibration of accelerormeter output for adults Med. Sci. Sports Exerc. 37 S512-22
    • (2005) Med. Sci. Sports Exerc. , vol.37 , pp. S512-S522
    • Matthews, C.E.1
  • 33
    • 0003682772 scopus 로고
    • New Jersey: Department of Computer Science, Laboratory for Computer Science Research, Rutgers University
    • Mitchell T M 1980 The Need for Biases in Learning Generalizations (New Jersey: Department of Computer Science, Laboratory for Computer Science Research, Rutgers University) pp 184-91
    • (1980) The Need for Biases in Learning Generalizations , pp. 184-191
    • Mitchell, T.M.1
  • 37
    • 33750707878 scopus 로고    scopus 로고
    • Feature selection and activity recognition from wearable sensors
    • Ubiquitous Computing Systems (Berlin: Springer)
    • Pirttikangas P, Fujinami K and Nakajima T 2006 Feature selection and activity recognition from wearable sensors Ubiquitous Computing Systems (Lecture Notes in Computer Science) vol 4239 (Berlin: Springer) pp 516-27
    • (2006) Lecture Notes in Computer Science , vol.4239 , pp. 516-527
    • Pirttikangas, P.1    Fujinami, K.2    Nakajima, T.3
  • 38
    • 33748577353 scopus 로고    scopus 로고
    • Development of novel techniques to classify physical activity mode using accelerometers
    • 1626-34
    • Pober D M, Staudenmayer J, Raphael C and Freedson P S 2006 Development of novel techniques to classify physical activity mode using accelerometers Med. Sci. Sports Exerc. 38 1626-34
    • (2006) Med. Sci. Sports Exerc. , vol.38 , pp. 1626-1634
    • Pober, D.M.1    Staudenmayer, J.2    Raphael, C.3    Freedson, P.S.4
  • 39
    • 65249157400 scopus 로고    scopus 로고
    • Activity identification using body-mounted sensors - A review of classification techniques
    • R1-33
    • Preece S J, Goulermas J Y, Kenney L P, Howard D, Meijer K and Crompton R 2009 Activity identification using body-mounted sensors - a review of classification techniques Physiol. Meas. 30 R1-33
    • (2009) Physiol. Meas. , vol.30 , Issue.4 , pp. R1-33
    • Preece, S.J.1    Goulermas, J.Y.2    Kenney, L.P.3    Howard, D.4    Meijer, K.5    Crompton, R.6
  • 41
    • 0022594196 scopus 로고
    • An introduction to hidden Markov models
    • 4-16
    • Rabiner L R and Juang B H 1986 An introduction to hidden Markov models IEEE ASSP Mag. 3 4-16
    • (1986) IEEE ASSP Mag. , vol.3 , pp. 4-16
    • Rabiner, L.R.1    Juang, B.H.2
  • 42
    • 82055198469 scopus 로고    scopus 로고
    • A stepwise validation of a wearable system for estimating energy expenditure in field-based research
    • 1983-2001
    • Rumo M, Amft O, Troster G and Mader U 2011 A stepwise validation of a wearable system for estimating energy expenditure in field-based research Physiol. Meas. 32 1983-2001
    • (2011) Physiol. Meas. , vol.32 , Issue.12 , pp. 1983-2001
    • Rumo, M.1    Amft, O.2    Troster, G.3    Mader, U.4
  • 43
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • 1300-7
    • Staudenmayer J, Pober D, Crouter S, Bassett D and Freedson P 2009 An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer J. Appl. Physiol. 107 1300-7
    • (2009) J. Appl. Physiol. , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.3    Bassett, D.4    Freedson, P.5
  • 44
    • 0038131060 scopus 로고    scopus 로고
    • Comparison of MTI accelerometer cut-points for predicting time spent in physical activity
    • Strath S J, Bassett D R Jr and Swartz A M 2003 Comparison of MTI accelerometer cut-points for predicting time spent in physical activity Int. J. Sports Med. 24 298-303
    • (2003) Int. J. Sports Med. , vol.24 , pp. 298-303
    • Strath, S.J.1    Bassett, D.R.2    Swartz, A.M.3
  • 46
    • 84865488623 scopus 로고    scopus 로고
    • Artificial neural networks to predict activity type and energy expenditure in youth
    • 1801-8
    • Trost S G, Wong W K, Pfeiffer K A and Zheng Y 2012 Artificial neural networks to predict activity type and energy expenditure in youth Med. Sci. Sports Exerc. 44 1801-8
    • (2012) Med. Sci. Sports Exerc. , vol.44 , pp. 1801-1808
    • Trost, S.G.1    Wong, W.K.2    Pfeiffer, K.A.3    Zheng, Y.4
  • 47
    • 84878568785 scopus 로고    scopus 로고
    • Impact of study design on development and evaluation of an activity type classifier
    • 1042-51
    • van Hees V T, Golubic R, Ekelund U and Brage S 2013 Impact of study design on development and evaluation of an activity type classifier J. Appl. Physiol. 114 1042-51
    • (2013) J. Appl. Physiol. , vol.114 , pp. 1042-1051
    • Van Hees, V.T.1    Golubic, R.2    Ekelund, U.3    Brage, S.4
  • 48
    • 35248867501 scopus 로고    scopus 로고
    • Effectiveness of interventions to promote physical activity in children and adolescents: Systematic review of controlled trials
    • van Sluijs E M, McMinn A M and Griffin S J 2007 Effectiveness of interventions to promote physical activity in children and adolescents: systematic review of controlled trials Br. Med. J. 335 703
    • (2007) Br. Med. J. , vol.335 , pp. 703
    • Van Sluijs, E.M.1    McMinn, A.M.2    Griffin, S.J.3
  • 50
    • 54149118086 scopus 로고    scopus 로고
    • Objective monitoring of physical activity: Closing the gaps in the science of accelerometry
    • S487-588
    • Ward D 2005 Objective monitoring of physical activity: closing the gaps in the science of accelerometry Med. Sci. Sports Exerc. 37 S487-588
    • (2005) Med. Sci. Sports Exerc. , vol.37 , pp. S487-S588
    • Ward, D.1
  • 54
    • 84858704145 scopus 로고    scopus 로고
    • Physical activity classification using GENEA wrist-worn accelerometer
    • 742-8
    • Zhang S, Rowlands A V, Murray P and Hurst T 2012 Physical activity classification using GENEA wrist-worn accelerometer Med. Sci. Sports Exerc. 44 742-8
    • (2012) Med. Sci. Sports Exerc. , vol.44 , pp. 742-748
    • Zhang, S.1    Rowlands, A.V.2    Murray, P.3    Hurst, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.