메뉴 건너뛰기




Volumn 114, Issue 8, 2013, Pages 1042-1051

Impact of study design on development and evaluation of an activity-type classifier

Author keywords

Accelerometry; Classification; Monitor; Physical activity

Indexed keywords

ACTIMETRY; ADULT; ARTICLE; ARTIFICIAL INTELLIGENCE; CLASSIFICATION; DAILY LIFE ACTIVITY; EQUIPMENT; EQUIPMENT DESIGN; FEMALE; HUMAN; MALE; MEDICAL RESEARCH; METHODOLOGY; MIDDLE AGED; MOTOR ACTIVITY; PRINCIPAL COMPONENT ANALYSIS; QUESTIONNAIRE; REPRODUCIBILITY; SIGNAL PROCESSING; STATISTICAL MODEL; TIME; TRANSDUCER; WALKING;

EID: 84878568785     PISSN: 87507587     EISSN: 15221601     Source Type: Journal    
DOI: 10.1152/japplphysiol.00984.2012     Document Type: Article
Times cited : (44)

References (31)
  • 1
    • 33748420535 scopus 로고    scopus 로고
    • Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models
    • DOI 10.1088/0967-3334/27/10/001, PII S0967333406191340, 001
    • Allen FR, Ambikairajah E, Lovell NH, Celler BG. Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models. Physiol Meas 27:935-951, 2006. (Pubitemid 44339481)
    • (2006) Physiological Measurement , vol.27 , Issue.10 , pp. 935-951
    • Allen, F.R.1    Ambikairajah, E.2    Lovell, N.H.3    Celler, B.G.4
  • 3
    • 35048842427 scopus 로고    scopus 로고
    • Activity recognition from user-annotated acceleration data
    • Ferscha A and Mattern F. Vienna, Austria: Springer
    • Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Pervasive Computing, Second International Conference, PERVASIVE, edited by Ferscha A and Mattern F. Vienna, Austria: Springer, 2004.
    • (2004) Pervasive Computing, Second International Conference, PERVASIVE
    • Bao, L.1    Intille, S.S.2
  • 4
    • 74049124283 scopus 로고    scopus 로고
    • Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults
    • Besson H, Brage S, Jakes RW, Ekelund U, Wareham NJ. Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am J Clin Nutr 91:106-114, 2010.
    • (2010) Am J Clin Nutr , vol.91 , pp. 106-114
    • Besson, H.1    Brage, S.2    Jakes, R.W.3    Ekelund, U.4    Wareham, N.J.5
  • 5
    • 69349091456 scopus 로고    scopus 로고
    • Detection of type, duration, and intensity of physical activity using an accelerometer
    • Bonomi AG, Goris AH, Yin B, Westerterp KR. Detection of type, duration, and intensity of physical activity using an accelerometer. Med Sci Sports Exerc 41:1770-1777, 2009.
    • (2009) Med Sci Sports Exerc , vol.41 , pp. 1770-1777
    • Bonomi, A.G.1    Goris, A.H.2    Yin, B.3    Westerterp, K.R.4
  • 6
    • 69749105447 scopus 로고    scopus 로고
    • Improving the assessment of daily energy expenditure by identifying types of physical activity using a single accelerometer
    • Bonomi AG, Plasqui G, Goris AH, Westerterp KR. Improving the assessment of daily energy expenditure by identifying types of physical activity using a single accelerometer. J Appl Physiol 107:655-661, 2009.
    • (2009) J Appl Physiol , vol.107 , pp. 655-661
    • Bonomi, A.G.1    Plasqui, G.2    Goris, A.H.3    Westerterp, K.R.4
  • 7
    • 35748983078 scopus 로고    scopus 로고
    • Online, 18 December 2011
    • Bureau of Labor Statistics, US Dept. of Labor. American Time Use Survey (Online). http://www.bls.gov/tus/current/household.htm [18 December 2011].
    • American Time use Survey
  • 9
    • 80053580751 scopus 로고    scopus 로고
    • Hours spent and energy expended in physical activity domains: Results from the Tomorrow Project cohort in Alberta, Canada
    • Csizmadi I, Lo Siou G, Friedenreich CM, Owen N, Robson PJ. Hours spent and energy expended in physical activity domains: results from the Tomorrow Project cohort in Alberta, Canada. Int J Behav Nutr Phys Act 8:110, 2011.
    • (2011) Int J Behav Nutr Phys Act , vol.8 , pp. 110
    • Csizmadi, I.1    Lo Siou, G.2    Friedenreich, C.M.3    Owen, N.4    Robson, P.J.5
  • 11
    • 0034244011 scopus 로고    scopus 로고
    • Motion pattern and posture: Correctly assessed by calibrated accelerometers
    • Foerster F, Fahrenberg J. Motion pattern and posture: correctly assessed by calibrated accelerometers. Behav Res Methods Instrum Comput 32:450-457, 2000.
    • (2000) Behav Res Methods Instrum Comput , vol.32 , pp. 450-457
    • Foerster, F.1    Fahrenberg, J.2
  • 12
    • 83655203046 scopus 로고    scopus 로고
    • Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: Validation on an independent sample
    • Freedson PS, Lyden K, Kozey-Keadle S, Staudenmayer J. Evaluation of artificial neural network algorithms for predicting METs and activity type from accelerometer data: validation on an independent sample. J Appl Physiol 111:1804-1812, 2011.
    • (2011) J Appl Physiol , vol.111 , pp. 1804-1812
    • Freedson, P.S.1    Lyden, K.2    Kozey-Keadle, S.3    Staudenmayer, J.4
  • 13
    • 80052076109 scopus 로고    scopus 로고
    • Identifying types of physical activity with a single accelerometer: Evaluating laboratory-trained algorithms in daily life
    • Gyllensten IC, Bonomi AG. Identifying types of physical activity with a single accelerometer: evaluating laboratory-trained algorithms in daily life. IEEE Trans Biomed Eng 58:2656-2663, 2011.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2656-2663
    • Gyllensten, I.C.1    Bonomi, A.G.2
  • 15
    • 84878610631 scopus 로고    scopus 로고
    • Online, 8 August 2012
    • Medical Research Council. Epidemiology Unit. Physical Activity Epidemiology (Online). http://www.mrc-epid.cam.ac.uk/Research/Programmes/ Programme-5/InDepth/index.html [8 August 2012].
    • Epidemiology Unit. Physical Activity Epidemiology
  • 16
    • 0015021890 scopus 로고
    • The assessment and analysis of handedness: The Edinburgh inventory
    • Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97-113, 1971.
    • (1971) Neuropsychologia , vol.9 , pp. 97-113
    • Oldfield, R.C.1
  • 17
    • 57649165678 scopus 로고    scopus 로고
    • Estimating intensity of physical activity: A comparison of wearable accelerometer and gyro sensors and 3 sensor locations
    • Parkka J, Ermes M, Antila K, Van Gils M, Manttari A, Nieminen H. Estimating intensity of physical activity: a comparison of wearable accelerometer and gyro sensors and 3 sensor locations. Conf Proc IEEE Eng Med Biol Soc 2007:1511-1514, 2007.
    • (2007) Conf Proc IEEE Eng Med Biol Soc , vol.2007 , pp. 1511-1514
    • Parkka, J.1    Ermes, M.2    Antila, K.3    Van Gils, M.4    Manttari, A.5    Nieminen, H.6
  • 18
    • 33748577353 scopus 로고    scopus 로고
    • Development of novel techniques to classify physical activity mode using accelerometers
    • DOI 10.1249/01.mss.0000227542.43669.45
    • Pober DM, Staudenmayer J, Raphael C, Freedson PS. Development of novel techniques to classify physical activity mode using accelerometers. Med Sci Sports Exerc 38:1626-1634, 2006. (Pubitemid 44373782)
    • (2006) Medicine and Science in Sports and Exercise , vol.38 , Issue.9 , pp. 1626-1634
    • Pober, D.M.1    Staudenmayer, J.2    Raphael, C.3    Freedson, P.S.4
  • 19
    • 65349117069 scopus 로고    scopus 로고
    • A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
    • Preece SJ, Goulermas JY, Kenney LP, Howard D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans Biomed Eng 56:871-879, 2009.
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 871-879
    • Preece, S.J.1    Goulermas, J.Y.2    Kenney, L.P.3    Howard, D.4
  • 22
    • 80053916320 scopus 로고    scopus 로고
    • Recognition of activities in children by two uniaxial accelerometers in free-living conditions
    • Ruch N, Rumo M, Mader U. Recognition of activities in children by two uniaxial accelerometers in free-living conditions. Eur J Appl Physiol 111:1917-1927, 2011.
    • (2011) Eur J Appl Physiol , vol.111 , pp. 1917-1927
    • Ruch, N.1    Rumo, M.2    Mader, U.3
  • 24
    • 84878530869 scopus 로고    scopus 로고
    • Online, 18 December 2011
    • Statistics Sweden. The Swedish Time Use Survey (Online). http://www.scb.se/Pages/Product-12211.aspx [18 December 2011].
    • The Swedish Time use Survey
  • 25
    • 70350115240 scopus 로고    scopus 로고
    • An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
    • Staudenmayer J, Pober D, Crouter SE, Bassett DR, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 107:1300-1307, 2009.
    • (2009) J Appl Physiol , vol.107 , pp. 1300-1307
    • Staudenmayer, J.1    Pober, D.2    Crouter, S.E.3    Bassett, D.R.4    Freedson, P.5
  • 26
    • 84856506339 scopus 로고    scopus 로고
    • Time spent in physical activity and sedentary behaviors on the working day: The American time use survey
    • Tudor-Locke C, Leonardi C, Johnson WD, Katzmarzyk PT. Time spent in physical activity and sedentary behaviors on the working day: the American time use survey. J Occup Environ Med 53:1382-1387, 2011.
    • (2011) J Occup Environ Med , vol.53 , pp. 1382-1387
    • Tudor-Locke, C.1    Leonardi, C.2    Johnson, W.D.3    Katzmarzyk, P.T.4
  • 27
    • 84868087360 scopus 로고    scopus 로고
    • The challenge of assessing physical activity in populations
    • author reply 1555-1556
    • Van Hees V. The challenge of assessing physical activity in populations. Lancet 380:1555; author reply 1555-1556, 2012.
    • (2012) Lancet , vol.380 , pp. 1555
    • Van Hees, V.1
  • 29
    • 0031719288 scopus 로고    scopus 로고
    • The assessment of physical activity in individuals and populations: Why try to be more precise about how physical activity is assessed?
    • Wareham NJ, Rennie KL. The assessment of physical activity in individuals and populations: why try to be more precise about how physical activity is assessed? Int J Obes Relat Metab Disord 22, Suppl 2:S30-S38, 1998.
    • (1998) Int J Obes Relat Metab Disord , vol.22 , Issue.SUPPL. 2
    • Wareham, N.J.1    Rennie, K.L.2
  • 31
    • 84858704145 scopus 로고    scopus 로고
    • Physical activity classification using the GENEA wrist worn accelerometer
    • Zhang S, Rowlands AV, Murray P, Hurst T. Physical activity classification using the GENEA wrist worn accelerometer. Med Sci Sports Exerc 44:742-748, 2012.
    • (2012) Med Sci Sports Exerc , vol.44 , pp. 742-748
    • Zhang, S.1    Rowlands, A.V.2    Murray, P.3    Hurst, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.