메뉴 건너뛰기




Volumn 30, Issue 2, 2016, Pages 283-312

Using dynamic time warping distances as features for improved time series classification

Author keywords

Dynamic time warping; Symbolic aggregate approximation; Time series classification

Indexed keywords

AGGREGATES; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 84958052891     PISSN: 13845810     EISSN: 1573756X     Source Type: Journal    
DOI: 10.1007/s10618-015-0418-x     Document Type: Article
Times cited : (315)

References (45)
  • 1
    • 84866041459 scopus 로고    scopus 로고
    • A complexity-invariant distance measure for time series
    • Batista G, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. SDM, SIAM 11:699–710
    • (2011) SDM, SIAM , vol.11 , pp. 699-710
    • Batista, G.1    Wang, X.2    Keogh, E.J.3
  • 3
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, vol 10, pp 359–370
    • (1994) KDD workshop, Seattle , vol.10 , pp. 359-370
    • Berndt, D.J.1    Clifford, J.2
  • 4
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: a library for support vector machines
    • Chang CC, Lin CJ (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27
    • (2011) ACM Trans Intell Syst Technol , vol.2 , Issue.3 , pp. 27
    • Chang, C.C.1    Lin, C.J.2
  • 5
    • 28044453755 scopus 로고    scopus 로고
    • On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth international conference on Very large data bases. vol 30, VLDB Endowment
    • Chen L, Ng R (2004) On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth international conference on Very large data bases. vol 30, VLDB Endowment, pp 792–803
    • (2004) pp 792–803
    • Chen, L.1    Ng, R.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
    • (2006) J Mach Learn Res , vol.7 , pp. 1-30
    • Demšar, J.1
  • 9
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Springer, Heidelberg
    • Dietterich TG (2000) Ensemble methods in machine learning. Multiple classifier systems. Springer, Heidelberg, pp 1–15
    • (2000) Multiple classifier systems , pp. 1-15
    • Dietterich, T.G.1
  • 10
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: experimental comparison of representations and distance measures
    • Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1(2):1542–1552
    • (2008) Proc VLDB Endow , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 11
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases, In: Proceedings of the 1994 ACM SIGMOD international conference on Management of data
    • Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases, In: Proceedings of the 1994 ACM SIGMOD international conference on Management of data, pp 419–429
    • (1994) pp 419–429
    • Faloutsos, C.1    Ranganathan, M.2    Manolopoulos, Y.3
  • 12
    • 84910104155 scopus 로고    scopus 로고
    • Highly comparative feature-based time-series classification
    • Fulcher BD, Jones NS (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl Data Eng 26(12):3026–3037
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , Issue.12 , pp. 3026-3037
    • Fulcher, B.D.1    Jones, N.S.2
  • 13
    • 84875058969 scopus 로고    scopus 로고
    • Pattern extraction for time series classification
    • Springer, Berlin
    • Geurts P (2001) Pattern extraction for time series classification. Principles of data mining and knowledge discovery. Springer, Berlin, pp 115–127
    • (2001) Principles of data mining and knowledge discovery , pp. 115-127
    • Geurts, P.1
  • 14
    • 56349096866 scopus 로고    scopus 로고
    • Sigurdsson S (2008) Support vector machines and dynamic time warping for time series
    • IJCNN: IEEE World Congress on Computational Intelligence
    • Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp 2772–2776
    • (2008) Networks , vol.2008 , pp. 2772-2776
    • Gudmundsson, S.1    Runarsson, T.P.2
  • 17
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • Technical report, UC Santa Cruz
    • Haussler D (1999) Convolution kernels on discrete structures. Technical report, UC Santa Cruz
    • (1999)
    • Haussler, D.1
  • 20
    • 0016467604 scopus 로고
    • Minimum prediction residual principle applied to speech recognition
    • Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23(1):67–72
    • (1975) IEEE Trans Acoust Speech Signal Process , vol.23 , Issue.1 , pp. 67-72
    • Itakura, F.1
  • 22
    • 84958085432 scopus 로고    scopus 로고
    • Kate RJ (2014) UWM time series classification webpage
    • Kate RJ (2014) UWM time series classification webpage. http://www.uwm.edu/~katerj/timeseries
  • 23
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: a survey and empirical demonstration
    • Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Discov 7(4):349–371
    • (2003) Data Min Knowl Discov , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 24
    • 34548547034 scopus 로고    scopus 로고
    • HOT SAX: Efficiently finding the most unusual time series subsequence. In: Fifth IEEE International Conference on Data Mining (ICDM)
    • Keogh E, Lin J, Fu A (2005) HOT SAX: Efficiently finding the most unusual time series subsequence. In: Fifth IEEE International Conference on Data Mining (ICDM), pp 226–233
    • (2005) pp 226–233
    • Keogh, E.1    Lin, J.2    Fu, A.3
  • 25
    • 84958085434 scopus 로고    scopus 로고
    • Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2011) The UCR time series classification/clustering homepage
    • Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2011) The UCR time series classification/clustering homepage. http://www.cs.ucr.edu/~eamonn/time_series_data
  • 26
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: a novel symbolic representation of time series
    • Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107–144
    • (2007) Data Min Knowl Discov , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 27
    • 84868624588 scopus 로고    scopus 로고
    • Rotation-invariant similarity in time series using bag-of-patterns representation
    • Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation. J Intell Inf Syst 39(2):287–315
    • (2012) J Intell Inf Syst , vol.39 , Issue.2 , pp. 287-315
    • Lin, J.1    Khade, R.2    Li, Y.3
  • 28
    • 84944181451 scopus 로고    scopus 로고
    • Time series classification with ensembles of elastic distance measures
    • Lines J, Bagnall A (2014) Time series classification with ensembles of elastic distance measures. Data Min Knowl Discov 4:1–28
    • (2014) Data Min Knowl Discov , vol.4 , pp. 1-28
    • Lines, J.1    Bagnall, A.2
  • 30
    • 33644924597 scopus 로고    scopus 로고
    • Embedding of time series data by using dynamic time warping distances
    • Mizuhara Y, Hayashi A, Suematsu N (2006) Embedding of time series data by using dynamic time warping distances. Syst Comput Japan 37(3):1–9
    • (2006) Syst Comput Japan , vol.37 , Issue.3 , pp. 1-9
    • Mizuhara, Y.1    Hayashi, A.2    Suematsu, N.3
  • 31
    • 33744973448 scopus 로고    scopus 로고
    • Feature-based classification of time-series data
    • Nanopoulos A, Alcock R, Manolopoulos Y (2001) Feature-based classification of time-series data. Int J Comput Res 10(3):49–61
    • (2001) Int J Comput Res , vol.10 , Issue.3 , pp. 49-61
    • Nanopoulos, A.1    Alcock, R.2    Manolopoulos, Y.3
  • 34
    • 31744443401 scopus 로고    scopus 로고
    • Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data
    • Ratanamahatana CA, Keogh E (2004a) Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data, pp 22–25
    • (2004) pp 22–25
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 35
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM International Conference on Data Mining (SDM ’04)
    • Ratanamahatana CA, Keogh E (2004b) Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM International Conference on Data Mining (SDM ’04), pp 11–22
    • (2004) pp 11–22
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 36
    • 2442543440 scopus 로고    scopus 로고
    • Interval and dynamic time warping-based decision trees
    • ACM symposium on Applied computing, ACM
    • Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM symposium on Applied computing, ACM, pp 548–552
    • (2004) Proceedings of the , vol.2004 , pp. 548-552
    • Rodríguez, J.J.1    Alonso, C.J.2
  • 37
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49
    • (1978) IEEE Trans Acoust Speech Signal Process , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 38
    • 84894642793 scopus 로고    scopus 로고
    • SAX-VSM: Interpretable time series classification using sax and vector space model. In: IEEE 13th International Conference on Data Mining (ICDM)
    • Senin P, Malinchik S (2013) SAX-VSM: Interpretable time series classification using sax and vector space model. In: IEEE 13th International Conference on Data Mining (ICDM), pp 1175–1180
    • (2013) pp 1175–1180
    • Senin, P.1    Malinchik, S.2
  • 39
    • 65449164304 scopus 로고    scopus 로고
    • Shieh J, Keogh E (2008) i SAX: Indexing and mining terabyte sized time series. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 623–631
    • Shieh J, Keogh E (2008) i SAX: Indexing and mining terabyte sized time series. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 623–631
  • 42
    • 84872397385 scopus 로고    scopus 로고
    • Experimental comparison of representation methods and distance measures for time series data
    • Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Discov 26(2):275–309
    • (2013) Data Min Knowl Discov , vol.26 , Issue.2 , pp. 275-309
    • Wang, X.1    Mueen, A.2    Ding, H.3    Trajcevski, G.4    Scheuermann, P.5    Keogh, E.6
  • 43
    • 33749260341 scopus 로고    scopus 로고
    • Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning, ACM
    • Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning, ACM, pp 1033–1040
    • (2006) pp 1033–1040
    • Xi, X.1    Keogh, E.2    Shelton, C.3    Wei, L.4    Ratanamahatana, C.A.5
  • 44
    • 81055156693 scopus 로고    scopus 로고
    • A brief survey on sequence classification
    • Xing Z, Pei J, Keogh E (2010) A brief survey on sequence classification. ACM SIGKDD Explor Newsl 12(1):40–48
    • (2010) ACM SIGKDD Explor Newsl , vol.12 , Issue.1 , pp. 40-48
    • Xing, Z.1    Pei, J.2    Keogh, E.3
  • 45
    • 70350660908 scopus 로고    scopus 로고
    • Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM
    • Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 947–956
    • (2009) pp 947–956
    • Ye, L.1    Keogh, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.