-
1
-
-
84866041459
-
A complexity-invariant distance measure for time series
-
Batista G, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. SDM, SIAM 11:699–710
-
(2011)
SDM, SIAM
, vol.11
, pp. 699-710
-
-
Batista, G.1
Wang, X.2
Keogh, E.J.3
-
3
-
-
0000286376
-
Using dynamic time warping to find patterns in time series
-
Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In: KDD workshop, Seattle, vol 10, pp 359–370
-
(1994)
KDD workshop, Seattle
, vol.10
, pp. 359-370
-
-
Berndt, D.J.1
Clifford, J.2
-
5
-
-
28044453755
-
On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth international conference on Very large data bases. vol 30, VLDB Endowment
-
Chen L, Ng R (2004) On the marriage of lp-norms and edit distance. In: Proceedings of the Thirtieth international conference on Very large data bases. vol 30, VLDB Endowment, pp 792–803
-
(2004)
pp 792–803
-
-
Chen, L.1
Ng, R.2
-
8
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
9
-
-
80053403826
-
Ensemble methods in machine learning
-
Springer, Heidelberg
-
Dietterich TG (2000) Ensemble methods in machine learning. Multiple classifier systems. Springer, Heidelberg, pp 1–15
-
(2000)
Multiple classifier systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
10
-
-
84867136666
-
Querying and mining of time series data: experimental comparison of representations and distance measures
-
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1(2):1542–1552
-
(2008)
Proc VLDB Endow
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
11
-
-
0028447023
-
Fast subsequence matching in time-series databases, In: Proceedings of the 1994 ACM SIGMOD international conference on Management of data
-
Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases, In: Proceedings of the 1994 ACM SIGMOD international conference on Management of data, pp 419–429
-
(1994)
pp 419–429
-
-
Faloutsos, C.1
Ranganathan, M.2
Manolopoulos, Y.3
-
12
-
-
84910104155
-
Highly comparative feature-based time-series classification
-
Fulcher BD, Jones NS (2014) Highly comparative feature-based time-series classification. IEEE Trans Knowl Data Eng 26(12):3026–3037
-
(2014)
IEEE Trans Knowl Data Eng
, vol.26
, Issue.12
, pp. 3026-3037
-
-
Fulcher, B.D.1
Jones, N.S.2
-
13
-
-
84875058969
-
Pattern extraction for time series classification
-
Springer, Berlin
-
Geurts P (2001) Pattern extraction for time series classification. Principles of data mining and knowledge discovery. Springer, Berlin, pp 115–127
-
(2001)
Principles of data mining and knowledge discovery
, pp. 115-127
-
-
Geurts, P.1
-
14
-
-
56349096866
-
Sigurdsson S (2008) Support vector machines and dynamic time warping for time series
-
IJCNN: IEEE World Congress on Computational Intelligence
-
Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: IEEE International Joint Conference on Neural Networks, 2008. IJCNN 2008 (IEEE World Congress on Computational Intelligence), pp 2772–2776
-
(2008)
Networks
, vol.2008
, pp. 2772-2776
-
-
Gudmundsson, S.1
Runarsson, T.P.2
-
15
-
-
76749092270
-
The weka data mining software: an update
-
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18
-
(2009)
ACM SIGKDD Explor Newsl
, vol.11
, Issue.1
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
17
-
-
0004019973
-
Convolution kernels on discrete structures
-
Technical report, UC Santa Cruz
-
Haussler D (1999) Convolution kernels on discrete structures. Technical report, UC Santa Cruz
-
(1999)
-
-
Haussler, D.1
-
19
-
-
84912061459
-
Classification of time series by shapelet transformation
-
Hills J, Lines J, Baranauskas E, Mapp J, Bagnall A (2013) Classification of time series by shapelet transformation. Data Min Knowl Discov 2:1–31
-
(2013)
Data Min Knowl Discov
, vol.2
, pp. 1-31
-
-
Hills, J.1
Lines, J.2
Baranauskas, E.3
Mapp, J.4
Bagnall, A.5
-
20
-
-
0016467604
-
Minimum prediction residual principle applied to speech recognition
-
Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23(1):67–72
-
(1975)
IEEE Trans Acoust Speech Signal Process
, vol.23
, Issue.1
, pp. 67-72
-
-
Itakura, F.1
-
22
-
-
84958085432
-
-
Kate RJ (2014) UWM time series classification webpage
-
Kate RJ (2014) UWM time series classification webpage. http://www.uwm.edu/~katerj/timeseries
-
-
-
-
23
-
-
0042711018
-
On the need for time series data mining benchmarks: a survey and empirical demonstration
-
Keogh E, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Min Knowl Discov 7(4):349–371
-
(2003)
Data Min Knowl Discov
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
24
-
-
34548547034
-
HOT SAX: Efficiently finding the most unusual time series subsequence. In: Fifth IEEE International Conference on Data Mining (ICDM)
-
Keogh E, Lin J, Fu A (2005) HOT SAX: Efficiently finding the most unusual time series subsequence. In: Fifth IEEE International Conference on Data Mining (ICDM), pp 226–233
-
(2005)
pp 226–233
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
25
-
-
84958085434
-
-
Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2011) The UCR time series classification/clustering homepage
-
Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2011) The UCR time series classification/clustering homepage. http://www.cs.ucr.edu/~eamonn/time_series_data
-
-
-
-
26
-
-
34548093287
-
Experiencing SAX: a novel symbolic representation of time series
-
Lin J, Keogh E, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl Discov 15(2):107–144
-
(2007)
Data Min Knowl Discov
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
27
-
-
84868624588
-
Rotation-invariant similarity in time series using bag-of-patterns representation
-
Lin J, Khade R, Li Y (2012) Rotation-invariant similarity in time series using bag-of-patterns representation. J Intell Inf Syst 39(2):287–315
-
(2012)
J Intell Inf Syst
, vol.39
, Issue.2
, pp. 287-315
-
-
Lin, J.1
Khade, R.2
Li, Y.3
-
28
-
-
84944181451
-
Time series classification with ensembles of elastic distance measures
-
Lines J, Bagnall A (2014) Time series classification with ensembles of elastic distance measures. Data Min Knowl Discov 4:1–28
-
(2014)
Data Min Knowl Discov
, vol.4
, pp. 1-28
-
-
Lines, J.1
Bagnall, A.2
-
30
-
-
33644924597
-
Embedding of time series data by using dynamic time warping distances
-
Mizuhara Y, Hayashi A, Suematsu N (2006) Embedding of time series data by using dynamic time warping distances. Syst Comput Japan 37(3):1–9
-
(2006)
Syst Comput Japan
, vol.37
, Issue.3
, pp. 1-9
-
-
Mizuhara, Y.1
Hayashi, A.2
Suematsu, N.3
-
32
-
-
84958085435
-
The application of neural networks in the classification of the electrocardiogram
-
Springer, Berlin
-
Nugent C, Lopez J, Black N, Webb J (2002) The application of neural networks in the classification of the electrocardiogram. Computational intelligence processing in medical diagnosis. Springer, Berlin, pp 229–260
-
(2002)
Computational intelligence processing in medical diagnosis
, pp. 229-260
-
-
Nugent, C.1
Lopez, J.2
Black, N.3
Webb, J.4
-
33
-
-
84857879278
-
Classification of patients using novel multivariate time series representations of physiological data
-
Ordónez P, Armstrong T, Oates T, Fackler J (2011) Classification of patients using novel multivariate time series representations of physiological data. In: IEEE 10th International Conference on Machine Learning and Applications and Workshops (ICMLA), vol 2, pp 172–179
-
(2011)
IEEE 10th International Conference on Machine Learning and Applications and Workshops (ICMLA)
, vol.2
, pp. 172-179
-
-
Ordónez, P.1
Armstrong, T.2
Oates, T.3
Fackler, J.4
-
34
-
-
31744443401
-
Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data
-
Ratanamahatana CA, Keogh E (2004a) Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data, pp 22–25
-
(2004)
pp 22–25
-
-
Ratanamahatana, C.A.1
Keogh, E.2
-
35
-
-
2942525700
-
Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM International Conference on Data Mining (SDM ’04)
-
Ratanamahatana CA, Keogh E (2004b) Making time-series classification more accurate using learned constraints. In: Proceedings of SIAM International Conference on Data Mining (SDM ’04), pp 11–22
-
(2004)
pp 11–22
-
-
Ratanamahatana, C.A.1
Keogh, E.2
-
36
-
-
2442543440
-
Interval and dynamic time warping-based decision trees
-
ACM symposium on Applied computing, ACM
-
Rodríguez JJ, Alonso CJ (2004) Interval and dynamic time warping-based decision trees. In: Proceedings of the 2004 ACM symposium on Applied computing, ACM, pp 548–552
-
(2004)
Proceedings of the
, vol.2004
, pp. 548-552
-
-
Rodríguez, J.J.1
Alonso, C.J.2
-
37
-
-
0017930815
-
Dynamic programming algorithm optimization for spoken word recognition
-
Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49
-
(1978)
IEEE Trans Acoust Speech Signal Process
, vol.26
, Issue.1
, pp. 43-49
-
-
Sakoe, H.1
Chiba, S.2
-
38
-
-
84894642793
-
SAX-VSM: Interpretable time series classification using sax and vector space model. In: IEEE 13th International Conference on Data Mining (ICDM)
-
Senin P, Malinchik S (2013) SAX-VSM: Interpretable time series classification using sax and vector space model. In: IEEE 13th International Conference on Data Mining (ICDM), pp 1175–1180
-
(2013)
pp 1175–1180
-
-
Senin, P.1
Malinchik, S.2
-
39
-
-
65449164304
-
-
Shieh J, Keogh E (2008) i SAX: Indexing and mining terabyte sized time series. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 623–631
-
Shieh J, Keogh E (2008) i SAX: Indexing and mining terabyte sized time series. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 623–631
-
-
-
-
42
-
-
84872397385
-
Experimental comparison of representation methods and distance measures for time series data
-
Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E (2013) Experimental comparison of representation methods and distance measures for time series data. Data Min Knowl Discov 26(2):275–309
-
(2013)
Data Min Knowl Discov
, vol.26
, Issue.2
, pp. 275-309
-
-
Wang, X.1
Mueen, A.2
Ding, H.3
Trajcevski, G.4
Scheuermann, P.5
Keogh, E.6
-
43
-
-
33749260341
-
Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning, ACM
-
Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning, ACM, pp 1033–1040
-
(2006)
pp 1033–1040
-
-
Xi, X.1
Keogh, E.2
Shelton, C.3
Wei, L.4
Ratanamahatana, C.A.5
-
44
-
-
81055156693
-
A brief survey on sequence classification
-
Xing Z, Pei J, Keogh E (2010) A brief survey on sequence classification. ACM SIGKDD Explor Newsl 12(1):40–48
-
(2010)
ACM SIGKDD Explor Newsl
, vol.12
, Issue.1
, pp. 40-48
-
-
Xing, Z.1
Pei, J.2
Keogh, E.3
-
45
-
-
70350660908
-
Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM
-
Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, pp 947–956
-
(2009)
pp 947–956
-
-
Ye, L.1
Keogh, E.2
|