-
1
-
-
35048842427
-
Activity Recognition from User-Annotated Acceleration Data Pervasive Computing
-
Bao, L., and Intille, S. S. 2004. Activity Recognition from User-Annotated Acceleration Data Pervasive Computing. Pervasive Computing 3001:1–17.
-
(2004)
Pervasive Computing
, vol.3001
, pp. 1-17
-
-
Bao, L.1
Intille, S. S.2
-
2
-
-
83455203365
-
Calibrationa nd validation of wearable monitors
-
(Suppl 1)
-
Bassett Jr., D. R.; Rowlands, A.; and Trost, S. G. 2012. Calibrationa nd validation of wearable monitors. Med Sci Sports Exerc. 1(1 Suppl 1):S32–38.
-
(2012)
Med Sci Sports Exerc
, vol.1
, Issue.1
, pp. S32-S38
-
-
Bassett, D. R.1
Rowlands, A.2
Trost, S. G.3
-
3
-
-
33748505549
-
Physical activity measurement - a primer for health promotion
-
Bauman, A.; Phongsavan, P.; Schoeppe, S.; and Owen, N. 2006. Physical activity measurement - a primer for health promotion. IUHPE - Promotion and Education 8:92–103.
-
(2006)
IUHPE - Promotion and Education
, vol.8
, pp. 92-103
-
-
Bauman, A.1
Phongsavan, P.2
Schoeppe, S.3
Owen, N.4
-
4
-
-
69349091456
-
Detection of type, duration, and intensity of physical activity using an accelerometer
-
Bonomi, A.; Goris, A.; Yin, B.; and Westerterp, K. 2009. Detection of type, duration, and intensity of physical activity using an accelerometer. Medicine & Science in Sports & Exercise 41(9):1770.
-
(2009)
Medicine & Science in Sports & Exercise
, vol.41
, Issue.9
, pp. 1770
-
-
Bonomi, A.1
Goris, A.2
Yin, B.3
Westerterp, K.4
-
6
-
-
78650900690
-
Evaluation of neural networks to identify types of activity using accelerometers
-
de Vries, S.; Garre, F.; Engbers, L.; Hildebrandt, V.; and van Buuren, S. 2011. Evaluation of neural networks to identify types of activity using accelerometers. Medicine & Science in Sports & Exercise 43(1):101.
-
(2011)
Medicine & Science in Sports & Exercise
, vol.43
, Issue.1
, pp. 101
-
-
de Vries, S.1
Garre, F.2
Engbers, L.3
Hildebrandt, V.4
van Buuren, S.5
-
7
-
-
79953075845
-
Hasc challenge: gathering large scale human activity corpus for the real-world activity understandings
-
ACM
-
Kawaguchi, N.; Ogawa, N.; Iwasaki, Y.; Kaji, K.; Terada, T.; Murao, K.; Inoue, S.; Kawahara, Y.; Sumi, Y.; and Nishio, N. 2011. Hasc challenge: gathering large scale human activity corpus for the real-world activity understandings. In Proceedings of the 2nd Augmented Human International Conference, 27. ACM.
-
(2011)
Proceedings of the 2nd Augmented Human International Conference
, vol.27
-
-
Kawaguchi, N.1
Ogawa, N.2
Iwasaki, Y.3
Kaji, K.4
Terada, T.5
Murao, K.6
Inoue, S.7
Kawahara, Y.8
Sumi, Y.9
Nishio, N.10
-
8
-
-
0042711018
-
On the need for time series data mining benchmarks: a survey and empirical demonstration
-
Keogh, E., and Kasetty, S. 2003. On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4):349–371.
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
9
-
-
84880762436
-
A hybrid discriminative/generative approach for modeling human activities
-
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc
-
Lester, J.; Choudhury, T.; Kern, N.; Borriello, G.; and Hannaford, B. 2005. A hybrid discriminative/generative approach for modeling human activities. In Proceedings of the 19th international joint conference on Artificial intelligence, IJCAI’05, 766–772. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
-
(2005)
Proceedings of the 19th international joint conference on Artificial intelligence, IJCAI’05
, pp. 766-772
-
-
Lester, J.1
Choudhury, T.2
Kern, N.3
Borriello, G.4
Hannaford, B.5
-
10
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
ACM
-
Lin, J.; Keogh, E.; Lonardi, S.; and Chiu, B. 2003. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, 2–11. ACM.
-
(2003)
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
11
-
-
29344474528
-
Activity recognition from accelerometer data
-
AAAI Press
-
Ravi, N.; Dandekar, N.; Mysore, P.; and Littman, M. L. 2005. Activity recognition from accelerometer data. In Proceedings of the 17th conference on Innovative applications of artificial intelligence - Volume 3, IAAI’05, 1541–1546. AAAI Press.
-
(2005)
Proceedings of the 17th conference on Innovative applications of artificial intelligence - Volume 3, IAAI’05
, pp. 1541-1546
-
-
Ravi, N.1
Dandekar, N.2
Mysore, P.3
Littman, M. L.4
-
12
-
-
70350115240
-
An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer
-
Staudenmayer, J.; Pober, D.; Crouter, S.; Bassett, D.; and Freedson, P. 2009. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. Journal of Applied Physiology 107(4):1300–1307.
-
(2009)
Journal of Applied Physiology
, vol.107
, Issue.4
, pp. 1300-1307
-
-
Staudenmayer, J.1
Pober, D.2
Crouter, S.3
Bassett, D.4
Freedson, P.5
-
13
-
-
33846909807
-
Estimation of walking energy expenditure by using support vector regression
-
IEEE
-
Su, S. W.; Wang, L.; Celler, B. G.; Ambikairajah, E.; and Savkin, A. V. 2005. Estimation of walking energy expenditure by using support vector regression. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 3526–3529. IEEE.
-
(2005)
Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the
, pp. 3526-3529
-
-
Su, S. W.1
Wang, L.2
Celler, B. G.3
Ambikairajah, E.4
Savkin, A. V.5
-
15
-
-
28044434144
-
Conducting accelerometer-based activity assessments in field-based research
-
(suppl)
-
Trost, S. G.; McIver, K. L.; and Pate, R. R. 2005. Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise 37(11 suppl):S531–543.
-
(2005)
Medicine and Science in Sports and Exercise
, vol.37
, Issue.11
, pp. S531-S543
-
-
Trost, S. G.1
McIver, K. L.2
Pate, R. R.3
-
16
-
-
0035110824
-
Challenges and opportunities for measuring physical activity in sedentary adults
-
Tudor-Locke, C., and Myers, A. 2001. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Medicine 31(2):91–100.
-
(2001)
Sports Medicine
, vol.31
, Issue.2
, pp. 91-100
-
-
Tudor-Locke, C.1
Myers, A.2
-
18
-
-
84872381144
-
Experimental comparison of representation methods and distance measures for time series data
-
Wang, X.; Mueen, A.; Ding, H.; Trajcevski, G.; Scheuermann, P.; and Keogh, E. 2010. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery 1–35.
-
(2010)
Data Mining and Knowledge Discovery
, pp. 1-35
-
-
Wang, X.1
Mueen, A.2
Ding, H.3
Trajcevski, G.4
Scheuermann, P.5
Keogh, E.6
-
19
-
-
0026692226
-
Stacked generalization
-
Wolpert, D. 1992. Stacked generalization. Neural Networks 5(2):241–259.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.1
-
20
-
-
81055156693
-
A brief survey on sequence classification
-
Xing, Z.; Pei, J.; and Keogh, E. 2010. A brief survey on sequence classification. SIGKDD Explor. Newsl. 12(1):40–48.
-
(2010)
SIGKDD Explor. Newsl
, vol.12
, Issue.1
, pp. 40-48
-
-
Xing, Z.1
Pei, J.2
Keogh, E.3
|