메뉴 건너뛰기




Volumn 32, Issue 2, 2016, Pages 189-206

Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances

Author keywords

Adaptive neuro fuzzy inference system; Artificial neural network; Granite; Non linear multiple regression; Uniaxial compressive strength

Indexed keywords

COMPRESSIVE STRENGTH; FORECASTING; FUZZY INFERENCE; FUZZY SYSTEMS; GRANITE; MEAN SQUARE ERROR; NEURAL NETWORKS; SEISMIC WAVES; STATISTICAL TESTS; TRACKING (POSITION); WAVE PROPAGATION;

EID: 84961061738     PISSN: 01770667     EISSN: 14355663     Source Type: Journal    
DOI: 10.1007/s00366-015-0410-5     Document Type: Article
Times cited : (122)

References (102)
  • 1
    • 1242264861 scopus 로고    scopus 로고
    • A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock
    • Gokceoglu C, Zorlu K (2004) A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng Appl Artif Intell 17:61–72
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 61-72
    • Gokceoglu, C.1    Zorlu, K.2
  • 2
    • 84878281418 scopus 로고    scopus 로고
    • Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method
    • Minaeian B, Ahangari K (2013) Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arab J Geosci 6:1925–1931
    • (2013) Arab J Geosci , vol.6 , pp. 1925-1931
    • Minaeian, B.1    Ahangari, K.2
  • 3
    • 84891921715 scopus 로고    scopus 로고
    • The determination of uniaxial compressive strength from point load strength for pyroclastic rocks
    • Kahraman S (2014) The determination of uniaxial compressive strength from point load strength for pyroclastic rocks. Eng Geol 170:33–42
    • (2014) Eng Geol , vol.170 , pp. 33-42
    • Kahraman, S.1
  • 4
    • 0344849500 scopus 로고    scopus 로고
    • Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey
    • Tugrul A, Zarif IH (1999) Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Eng Geol 51:303–317
    • (1999) Eng Geol , vol.51 , pp. 303-317
    • Tugrul, A.1    Zarif, I.H.2
  • 5
    • 3042636949 scopus 로고    scopus 로고
    • Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate
    • Sonmez H, Tuncay E, Gokceoglu C (2004) Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerate. Int J Rock Mech Min Sci 41(5):717–729
    • (2004) Int J Rock Mech Min Sci , vol.41 , Issue.5 , pp. 717-729
    • Sonmez, H.1    Tuncay, E.2    Gokceoglu, C.3
  • 6
    • 30344474020 scopus 로고    scopus 로고
    • Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation
    • Sonmez H, Gokceoglu C, Nefeslioglu HA, Kayabasi A (2006) Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. Int J Rock Mech Min Sci 43:224–235
    • (2006) Int J Rock Mech Min Sci , vol.43 , pp. 224-235
    • Sonmez, H.1    Gokceoglu, C.2    Nefeslioglu, H.A.3    Kayabasi, A.4
  • 7
    • 18644368971 scopus 로고    scopus 로고
    • The effect of porosity on the relation between uniaxial compressive strength and point load index
    • Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42(4):584–589
    • (2005) Int J Rock Mech Min Sci , vol.42 , Issue.4 , pp. 584-589
    • Kahraman, S.1    Gunaydin, O.2    Fener, M.3
  • 8
    • 39049166212 scopus 로고    scopus 로고
    • A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength
    • Sharma PK, Singh TN (2008) A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull Eng Geol Environ 67:17–22
    • (2008) Bull Eng Geol Environ , vol.67 , pp. 17-22
    • Sharma, P.K.1    Singh, T.N.2
  • 9
    • 59749087727 scopus 로고    scopus 로고
    • Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer
    • Yagiz S (2009) Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull Eng Geol Environ 68(1):55–63
    • (2009) Bull Eng Geol Environ , vol.68 , Issue.1 , pp. 55-63
    • Yagiz, S.1
  • 10
    • 84879335515 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances
    • Yesiloglu-Gultekin N, Gokceoglu C, Sezer EA (2013) Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances. Int J Rock Mech Min Sci 62:113–122
    • (2013) Int J Rock Mech Min Sci , vol.62 , pp. 113-122
    • Yesiloglu-Gultekin, N.1    Gokceoglu, C.2    Sezer, E.A.3
  • 11
    • 84861571681 scopus 로고    scopus 로고
    • Correlation between point load index and uniaxial compressive strength for different rock types
    • Singh TN, Kainthola A, Venkatesh A (2012) Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech Rock Eng 45:259–264
    • (2012) Rock Mech Rock Eng , vol.45 , pp. 259-264
    • Singh, T.N.1    Kainthola, A.2    Venkatesh, A.3
  • 12
    • 84864323764 scopus 로고    scopus 로고
    • A neuro-genetic network for predicting uniaxial compressive strength of rocks
    • Monjezi M, Khoshalan HA, Razifard M (2012) A neuro-genetic network for predicting uniaxial compressive strength of rocks. Geotech Geol Eng 30(4):1053–1062
    • (2012) Geotech Geol Eng , vol.30 , Issue.4 , pp. 1053-1062
    • Monjezi, M.1    Khoshalan, H.A.2    Razifard, M.3
  • 13
    • 80051886921 scopus 로고    scopus 로고
    • P-wave velocity test for assessment of geotechnical properties of some rock materials
    • Yagiz S (2011) P-wave velocity test for assessment of geotechnical properties of some rock materials. Bull Mater Sci 34(4):947–953
    • (2011) Bull Mater Sci , vol.34 , Issue.4 , pp. 947-953
    • Yagiz, S.1
  • 14
    • 0007501624 scopus 로고
    • Prediction of compression strength from other rock properties
    • D’Andrea DV, Fisher RL, Fogelson DE (1964) Prediction of compression strength from other rock properties. Colo Sch Mines Q 59(4B):623–640
    • (1964) Colo Sch Mines Q , vol.59 , Issue.4B , pp. 623-640
    • D’Andrea, D.V.1    Fisher, R.L.2    Fogelson, D.E.3
  • 15
    • 0025632483 scopus 로고
    • Evaluation of empirical methods for measuring the uniaxial compressive strength of rock
    • Cargill JS, Shakoor A (1990) Evaluation of empirical methods for measuring the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 27:495–503
    • (1990) Int J Rock Mech Min Sci , vol.27 , pp. 495-503
    • Cargill, J.S.1    Shakoor, A.2
  • 16
    • 0027797349 scopus 로고
    • Correlation between point load index and compressive strength for quartzite rocks
    • Singh VK, Singh DP (1993) Correlation between point load index and compressive strength for quartzite rocks. Geotech Geol Eng 11:269–272
    • (1993) Geotech Geol Eng , vol.11 , pp. 269-272
    • Singh, V.K.1    Singh, D.P.2
  • 17
    • 0035492232 scopus 로고    scopus 로고
    • Evaluation of simple methods for assessing the uniaxial compressive strength of rock
    • Kahraman S (2001) Evaluation of simple methods for assessing the uniaxial compressive strength of rock. Int J Rock Mech Min Sci 38:981–994
    • (2001) Int J Rock Mech Min Sci , vol.38 , pp. 981-994
    • Kahraman, S.1
  • 18
    • 0036090265 scopus 로고    scopus 로고
    • The artificial neural network as a tool for assessing geotechnical properties
    • Young Y, Rosenbaum SM (2002) The artificial neural network as a tool for assessing geotechnical properties. Geotech Geol Eng 20:149–168
    • (2002) Geotech Geol Eng , vol.20 , pp. 149-168
    • Young, Y.1    Rosenbaum, S.M.2
  • 19
    • 68249158247 scopus 로고    scopus 로고
    • The effect of rock classes on the relation between uniaxial compressive strength and point load index
    • Kahraman S, Gunaydin O (2009) The effect of rock classes on the relation between uniaxial compressive strength and point load index. Bull Eng Geol Environ 68(3):345–353
    • (2009) Bull Eng Geol Environ , vol.68 , Issue.3 , pp. 345-353
    • Kahraman, S.1    Gunaydin, O.2
  • 20
    • 77954035973 scopus 로고    scopus 로고
    • Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength
    • Basu A, Kamran M (2010) Point load test on schistose rocks and its applicability in predicting uniaxial compressive strength. Int J Rock Mech Min Sci 47:823–828
    • (2010) Int J Rock Mech Min Sci , vol.47 , pp. 823-828
    • Basu, A.1    Kamran, M.2
  • 21
    • 15044359581 scopus 로고    scopus 로고
    • A study of transmission velocity of primary wave (P-wave) in Coal Measures sandstone
    • Singh TN, Dubey RK (2000) A study of transmission velocity of primary wave (P-wave) in Coal Measures sandstone. J Sci Ind Res 59:482–486
    • (2000) J Sci Ind Res , vol.59 , pp. 482-486
    • Singh, T.N.1    Dubey, R.K.2
  • 22
    • 1642538202 scopus 로고    scopus 로고
    • Prediction of P-wave velocity and anisotropic properties of rock using artificial neural networks technique
    • Singh TN, Kanchan R, Saigal K, Verma AK (2004) Prediction of P-wave velocity and anisotropic properties of rock using artificial neural networks technique. J Sci Ind Res 63(1):32–38
    • (2004) J Sci Ind Res , vol.63 , Issue.1 , pp. 32-38
    • Singh, T.N.1    Kanchan, R.2    Saigal, K.3    Verma, A.K.4
  • 23
    • 33750510900 scopus 로고    scopus 로고
    • Predicting uniaxial compressive strength by point load test: significance of cone penetration
    • Basu A, Aydin A (2006) Predicting uniaxial compressive strength by point load test: significance of cone penetration. Rock Mech Rock Eng 39(5):483–490
    • (2006) Rock Mech Rock Eng , vol.39 , Issue.5 , pp. 483-490
    • Basu, A.1    Aydin, A.2
  • 24
    • 79551590887 scopus 로고    scopus 로고
    • A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity
    • Sharma PK, Khandelwal M, Singh TN (2011) A correlation between Schmidt hammer rebound numbers with impact strength index, slake durability index and P-wave velocity. Int J Earth Sci (Geol Rundsch) 100:189–195
    • (2011) Int J Earth Sci (Geol Rundsch) , vol.100 , pp. 189-195
    • Sharma, P.K.1    Khandelwal, M.2    Singh, T.N.3
  • 25
    • 0001213946 scopus 로고
    • A systematic determination of engineering criteria for rocks
    • Aufmuth RE (1973) A systematic determination of engineering criteria for rocks. Bull Assoc Eng Geol 11:235–245
    • (1973) Bull Assoc Eng Geol , vol.11 , pp. 235-245
    • Aufmuth, R.E.1
  • 26
    • 0020603808 scopus 로고    scopus 로고
    • Elkington PAS (1983) The application of strength and deformation index testing to the stability assessment of coal measures excavations
    • Balkema, Rotterdam
    • Singh RN, Hassani FP, Elkington PAS (1983) The application of strength and deformation index testing to the stability assessment of coal measures excavations. In: Proceeding of 24th US symposium on rock mechanics. Texas A and M University AEG, Balkema, Rotterdam, pp 599–609
    • Proceeding of 24th US symposium on rock mechanics. Texas A and M University AEG , pp. 599-609
    • Singh, R.N.1    Hassani, F.P.2
  • 27
    • 0025593320 scopus 로고
    • Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks
    • Sachpazis CI (1990) Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull Int Assoc Eng Geol 42:75–83
    • (1990) Bull Int Assoc Eng Geol , vol.42 , pp. 75-83
    • Sachpazis, C.I.1
  • 28
    • 2142693787 scopus 로고    scopus 로고
    • Mahtab A (1990) Use of Schmidt hammer for estimating mechanical properties of weak rock
    • Balkema, Rotterdam
    • Xu S, Grasso P, Mahtab A (1990) Use of Schmidt hammer for estimating mechanical properties of weak rock. In: Proceeding of 6th international IAEG Congress, Balkema, Rotterdam, pp 511–519
    • Proceeding of 6th international IAEG Congress , pp. 511-519
    • Xu, S.1    Grasso, P.2
  • 29
    • 0942280520 scopus 로고    scopus 로고
    • Estimation of rock physiomechanical properties using hardness methods
    • Yasar E, Erdogan Y (2004) Estimation of rock physiomechanical properties using hardness methods. Eng Geol 71:281–288
    • (2004) Eng Geol , vol.71 , pp. 281-288
    • Yasar, E.1    Erdogan, Y.2
  • 30
    • 43049152777 scopus 로고    scopus 로고
    • Determination of mechanical properties of rocks using simple methods
    • Kilic A, Teymen A (2008) Determination of mechanical properties of rocks using simple methods. Bull Eng Geol Environ 67(2):237–244
    • (2008) Bull Eng Geol Environ , vol.67 , Issue.2 , pp. 237-244
    • Kilic, A.1    Teymen, A.2
  • 31
    • 0035738876 scopus 로고    scopus 로고
    • Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength
    • Sulukcu S, Ulusay R (2001) Evaluation of the block punch index test with particular reference to the size effect, failure mechanism and its effectiveness in predicting rock strength. Int J Rock Mech Min Sci 38:1091–1111
    • (2001) Int J Rock Mech Min Sci , vol.38 , pp. 1091-1111
    • Sulukcu, S.1    Ulusay, R.2
  • 32
    • 1542644665 scopus 로고    scopus 로고
    • Considerations on strength of intact sedimentary rocks
    • Tsiambaos G, Sabatakakis N (2004) Considerations on strength of intact sedimentary rocks. Eng Geol 72:261–273
    • (2004) Eng Geol , vol.72 , pp. 261-273
    • Tsiambaos, G.1    Sabatakakis, N.2
  • 33
    • 56349113372 scopus 로고    scopus 로고
    • An example of artificial neural network (ANN) application for indirect estimation of rock parameters
    • Yilmaz I, Yuksek AG (2008) An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech Rock Eng 41(5):781–795
    • (2008) Rock Mech Rock Eng , vol.41 , Issue.5 , pp. 781-795
    • Yilmaz, I.1    Yuksek, A.G.2
  • 34
    • 70349184798 scopus 로고    scopus 로고
    • Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations
    • Diamantis K, Gartzos E, Migiros G (2009) Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: test results and empirical relations. Eng Geol 108:199–207
    • (2009) Eng Geol , vol.108 , pp. 199-207
    • Diamantis, K.1    Gartzos, E.2    Migiros, G.3
  • 35
    • 84859492454 scopus 로고    scopus 로고
    • Use of the block punch test to predict the compressive and tensile strengths of rocks
    • Mishra DA, Basu A (2012) Use of the block punch test to predict the compressive and tensile strengths of rocks. Int J Rock Mech Min Sci 51:119–127
    • (2012) Int J Rock Mech Min Sci , vol.51 , pp. 119-127
    • Mishra, D.A.1    Basu, A.2
  • 36
    • 84857652172 scopus 로고    scopus 로고
    • Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks
    • Kohno M, Maeda H (2012) Relationship between point load strength index and uniaxial compressive strength of hydrothermally altered soft rocks. Int J Rock Mech Min Sci 50:147–157
    • (2012) Int J Rock Mech Min Sci , vol.50 , pp. 147-157
    • Kohno, M.1    Maeda, H.2
  • 37
    • 58549083569 scopus 로고    scopus 로고
    • Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test
    • Moradian ZA, Behnia M (2009) Predicting the uniaxial compressive strength and static Young’s modulus of intact sedimentary rocks using the ultrasonic test. Int J Geomech 9:1–14
    • (2009) Int J Geomech , vol.9 , pp. 1-14
    • Moradian, Z.A.1    Behnia, M.2
  • 38
    • 84874980221 scopus 로고    scopus 로고
    • Correlating P-wave velocity with the physico-mechanical properties of different rocks
    • Khandelwal M (2013) Correlating P-wave velocity with the physico-mechanical properties of different rocks. Pure Appl Geophys 170:507–514
    • (2013) Pure Appl Geophys , vol.170 , pp. 507-514
    • Khandelwal, M.1
  • 39
    • 67349242287 scopus 로고    scopus 로고
    • Correlating static properties of coal measures rocks with P-wave velocity
    • Khandelwal M, Singh TN (2009) Correlating static properties of coal measures rocks with P-wave velocity. Int J Coal Geol 79:55–60
    • (2009) Int J Coal Geol , vol.79 , pp. 55-60
    • Khandelwal, M.1    Singh, T.N.2
  • 40
    • 26444515495 scopus 로고    scopus 로고
    • The relationship between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale volcanic group core samples from Sella field
    • Entwisle DC, Hobbs RN, Jones LD, Gunn D, Raines MG (2005) The relationship between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale volcanic group core samples from Sella field. Geotech Geol Eng 23:793–809
    • (2005) Geotech Geol Eng , vol.23 , pp. 793-809
    • Entwisle, D.C.1    Hobbs, R.N.2    Jones, L.D.3    Gunn, D.4    Raines, M.G.5
  • 42
    • 84944513380 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite
    • Jahed Armaghani D, Tonnizam Mohamad E, Momeni E, Narayanasamy MS, Mohd Amin MF (2014) An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ. doi:10.1007/s10064-014-0687-4
    • (2014) Bull Eng Geol Environ
    • Jahed Armaghani, D.1    Tonnizam Mohamad, E.2    Momeni, E.3    Narayanasamy, M.S.4    Mohd Amin, M.F.5
  • 43
    • 0036785198 scopus 로고    scopus 로고
    • A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition
    • Gokceoglu C (2002) A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng Geol 66(1–2):39–51
    • (2002) Eng Geol , vol.66 , Issue.1-2 , pp. 39-51
    • Gokceoglu, C.1
  • 44
    • 31144449676 scopus 로고    scopus 로고
    • Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity
    • Karakus M, Tutmez B (2006) Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech Rock Eng 39(1):45–57
    • (2006) Rock Mech Rock Eng , vol.39 , Issue.1 , pp. 45-57
    • Karakus, M.1    Tutmez, B.2
  • 45
    • 43649100157 scopus 로고    scopus 로고
    • Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees
    • Tiryaki B (2008) Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees. Eng Geol 99:51–60
    • (2008) Eng Geol , vol.99 , pp. 51-60
    • Tiryaki, B.1
  • 46
    • 44949162150 scopus 로고    scopus 로고
    • Prediction of compressive and tensile strength of limestone via genetic programming
    • Baykasoğlu A, Güllü H, Çanakçı H, Özbakır L (2008) Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst Appl 35(1–2):111–123
    • (2008) Expert Syst Appl , vol.35 , Issue.1-2 , pp. 111-123
    • Baykasoğlu, A.1    Güllü, H.2    Çanakçı, H.3    Özbakır, L.4
  • 47
    • 78751604817 scopus 로고    scopus 로고
    • Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network
    • Cevik A, Akcapınar-Sezer E, Cabalar AF, Gokceoglu C (2011) Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 11:2587–2594
    • (2011) Appl Soft Comput , vol.11 , pp. 2587-2594
    • Cevik, A.1    Akcapınar-Sezer, E.2    Cabalar, A.F.3    Gokceoglu, C.4
  • 48
    • 76249108297 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks
    • Dehghan S, Sattari Gh, Chehreh Chelgani S, Aliabadi MA (2010) Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min Sci Technol 20:41–46
    • (2010) Min Sci Technol , vol.20 , pp. 41-46
    • Dehghan, S.1    Sattari, G.2    Chehreh Chelgani, S.3    Aliabadi, M.A.4
  • 49
    • 77957999072 scopus 로고    scopus 로고
    • Estimation of strength parameters of rock using artificial neural networks
    • Sarkar K, Tiwary A, Singh TN (2010) Estimation of strength parameters of rock using artificial neural networks. Bull Eng Geol Environ 69:599–606
    • (2010) Bull Eng Geol Environ , vol.69 , pp. 599-606
    • Sarkar, K.1    Tiwary, A.2    Singh, T.N.3
  • 50
    • 84878550068 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for prediction of longitudinal wave velocity
    • Verma AK, Singh TN (2013) A neuro-fuzzy approach for prediction of longitudinal wave velocity. Neural Comput Appl 22(7–9):1685–1693
    • (2013) Neural Comput Appl , vol.22 , Issue.7-9 , pp. 1685-1693
    • Verma, A.K.1    Singh, T.N.2
  • 51
    • 84855354210 scopus 로고    scopus 로고
    • Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks
    • Singh TN, Verma AK (2012) Comparative analysis of intelligent algorithms to correlate strength and petrographic properties of some schistose rocks. Eng Comput 28:1–12
    • (2012) Eng Comput , vol.28 , pp. 1-12
    • Singh, T.N.1    Verma, A.K.2
  • 52
    • 84880719947 scopus 로고    scopus 로고
    • A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks
    • Singh R, Vishal V, Singh TN, Ranjith PG (2012) A comparative study of generalized regression neural network approach and adaptive neuro-fuzzy inference systems for prediction of unconfined compressive strength of rocks. Neural Comput Appl 23(2):499–506
    • (2012) Neural Comput Appl , vol.23 , Issue.2 , pp. 499-506
    • Singh, R.1    Vishal, V.2    Singh, T.N.3    Ranjith, P.G.4
  • 53
    • 84863921079 scopus 로고    scopus 로고
    • Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks
    • Yagiz S, Sezer EA, Gokceoglu C (2012) Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int J Numer Anal Methods 36:1636–1650
    • (2012) Int J Numer Anal Methods , vol.36 , pp. 1636-1650
    • Yagiz, S.1    Sezer, E.A.2    Gokceoglu, C.3
  • 54
    • 0032997179 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
    • Meulenkamp F, Grima MA (1999) Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. Int J Rock Mech Min Sci 36(1):29–39
    • (1999) Int J Rock Mech Min Sci , vol.36 , Issue.1 , pp. 29-39
    • Meulenkamp, F.1    Grima, M.A.2
  • 55
    • 38349077120 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of sandstones using petrography-based models
    • Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S (2008) Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 96(3–4):141–158
    • (2008) Eng Geol , vol.96 , Issue.3-4 , pp. 141-158
    • Zorlu, K.1    Gokceoglu, C.2    Ocakoglu, F.3    Nefeslioglu, H.A.4    Acikalin, S.5
  • 56
    • 61849112830 scopus 로고    scopus 로고
    • Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models
    • Yilmaz I, Yuksek G (2009) Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models. Int J Rock Mech Min Sci 46(4):803–810
    • (2009) Int J Rock Mech Min Sci , vol.46 , Issue.4 , pp. 803-810
    • Yilmaz, I.1    Yuksek, G.2
  • 57
    • 84865332648 scopus 로고    scopus 로고
    • Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties
    • Rabbani E, Sharif F, Koolivand Salooki M, Moradzadeh A (2012) Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. Int J Rock Mech Min Sci 56:100–111
    • (2012) Int J Rock Mech Min Sci , vol.56 , pp. 100-111
    • Rabbani, E.1    Sharif, F.2    Koolivand Salooki, M.3    Moradzadeh, A.4
  • 58
    • 84891863349 scopus 로고    scopus 로고
    • An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining
    • Rezaei M, Majdi A, Monjezi M (2012) An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput Appl 24(1):233–241
    • (2012) Neural Comput Appl , vol.24 , Issue.1 , pp. 233-241
    • Rezaei, M.1    Majdi, A.2    Monjezi, M.3
  • 59
    • 84872305578 scopus 로고    scopus 로고
    • Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks
    • Ceryan N, Okkan U, Kesimal A (2012) Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks. Environ Earth Sci 68(3):807–819
    • (2012) Environ Earth Sci , vol.68 , Issue.3 , pp. 807-819
    • Ceryan, N.1    Okkan, U.2    Kesimal, A.3
  • 60
    • 84884338097 scopus 로고    scopus 로고
    • Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks
    • Beiki M, Majdi A, Givshad AD (2013) Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int J Rock Mech Min Sci 63:159–169
    • (2013) Int J Rock Mech Min Sci , vol.63 , pp. 159-169
    • Beiki, M.1    Majdi, A.2    Givshad, A.D.3
  • 61
    • 84877943395 scopus 로고    scopus 로고
    • Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system
    • Mishra DA, Basu A (2013) Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng Geol 160:54–68
    • (2013) Eng Geol , vol.160 , pp. 54-68
    • Mishra, D.A.1    Basu, A.2
  • 62
    • 84893913862 scopus 로고    scopus 로고
    • Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones
    • Torabi-Kaveh M, Naseri F, Saneie S, Sarshari B (2014) Application of artificial neural networks and multivariate statistics to predict UCS and E using physical properties of Asmari limestones. Arab J Geosci. doi:10.1007/s12517-014-1331-0
    • (2014) Arab J Geosci
    • Torabi-Kaveh, M.1    Naseri, F.2    Saneie, S.3    Sarshari, B.4
  • 63
    • 84908308703 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
    • Momeni E, Jahed Armaghani D, Hajihassani M, Amin MFM (2015) Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 60:50–63
    • (2015) Measurement , vol.60 , pp. 50-63
    • Momeni, E.1    Jahed Armaghani, D.2    Hajihassani, M.3    Amin, M.F.M.4
  • 64
    • 84961052058 scopus 로고    scopus 로고
    • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, international society for rock mechanics. ISRM Turkish National Group, Ankara, Turkey
    • ISRM (2007) The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay R, Hudson JA (eds) Suggested methods prepared by the commission on testing methods, international society for rockmechanics. ISRM Turkish National Group, Ankara, Turkey
  • 65
    • 65749099794 scopus 로고    scopus 로고
    • Application of two non-linear prediction tools to the estimation of tunnel boring machine performance
    • Yagiz S, Gokceoglu C, Sezer E, Iplikci S (2009) Application of two non-linear prediction tools to the estimation of tunnel boring machine performance. Eng Appl Artif Intell 22(4):808–814
    • (2009) Eng Appl Artif Intell , vol.22 , Issue.4 , pp. 808-814
    • Yagiz, S.1    Gokceoglu, C.2    Sezer, E.3    Iplikci, S.4
  • 66
    • 70449523078 scopus 로고    scopus 로고
    • Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness
    • Yagiz S, Gokceoglu C (2010) Application of fuzzy inference system and nonlinear regression models for predicting rock brittleness. Expert Sys Appl 37(3):2265–2272
    • (2010) Expert Sys Appl , vol.37 , Issue.3 , pp. 2265-2272
    • Yagiz, S.1    Gokceoglu, C.2
  • 69
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
    • Looney CG (1996) Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. IEEE Trans Knowl Data Eng 8(2):211–226
    • (1996) IEEE Trans Knowl Data Eng , vol.8 , Issue.2 , pp. 211-226
    • Looney, C.G.1
  • 72
    • 0036712318 scopus 로고    scopus 로고
    • Predicting settlement of shallow foundations using neural networks
    • Shahin MA, Maier HR, Jaksa MB (2002) Predicting settlement of shallow foundations using neural networks. J Geotech Geoenviron Eng 128(9):785–793
    • (2002) J Geotech Geoenviron Eng , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 73
    • 0004063090 scopus 로고    scopus 로고
    • Prentice-Hall, Englewood Cliffs
    • Haykin S (1999) Neural networks, 2nd edn. Prentice-Hall, Englewood Cliffs
    • (1999) Neural networks
    • Haykin, S.1
  • 74
    • 0036530814 scopus 로고    scopus 로고
    • Neural methods for antenna array signal processing: a review
    • Du KL, Lai AKY, Cheng KKM, Swamy MNS (2002) Neural methods for antenna array signal processing: a review. Signal Process 82:547–561
    • (2002) Signal Process , vol.82 , pp. 547-561
    • Du, K.L.1    Lai, A.K.Y.2    Cheng, K.K.M.3    Swamy, M.N.S.4
  • 75
    • 78650569194 scopus 로고    scopus 로고
    • New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization
    • Kalinli A, Acar MC, Gunduz Z (2011) New approaches to determine the ultimate bearing capacity of shallow foundations based on artificial neural networks and ant colony optimization. Eng Geol 117:29–38
    • (2011) Eng Geol , vol.117 , pp. 29-38
    • Kalinli, A.1    Acar, M.C.2    Gunduz, Z.3
  • 76
    • 77955276218 scopus 로고    scopus 로고
    • Integration of artificial neural network and MADA methods for green supplier selection
    • Kuo RJ, Wang YC, Tien FC (2010) Integration of artificial neural network and MADA methods for green supplier selection. J Clean Prod 18(12):1161–1170
    • (2010) J Clean Prod , vol.18 , Issue.12 , pp. 1161-1170
    • Kuo, R.J.1    Wang, Y.C.2    Tien, F.C.3
  • 79
    • 84928113584 scopus 로고    scopus 로고
    • Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran)
    • Choobbasti AJ, Farrokhzad F, Barari A (2009) Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arab J Geosci 2(4):311–319
    • (2009) Arab J Geosci , vol.2 , Issue.4 , pp. 311-319
    • Choobbasti, A.J.1    Farrokhzad, F.2    Barari, A.3
  • 80
    • 84870184266 scopus 로고    scopus 로고
    • The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions
    • Erzin Y, Cetin T (2013) The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput Geosci 51:305–313
    • (2013) Comput Geosci , vol.51 , pp. 305-313
    • Erzin, Y.1    Cetin, T.2
  • 81
    • 84906825852 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN
    • Momeni E, Nazir R, Jahed Armaghani D, Maizir H (2014) Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 57:122–131
    • (2014) Measurement , vol.57 , pp. 122-131
    • Momeni, E.1    Nazir, R.2    Jahed Armaghani, D.3    Maizir, H.4
  • 85
    • 0027538427 scopus 로고
    • Backpropagation neural networks: a tutorial
    • Wyhthoff BJ (1993) Backpropagation neural networks: a tutorial. Chemom Intell Lab Syst 18:115–155
    • (1993) Chemom Intell Lab Syst , vol.18 , pp. 115-155
    • Wyhthoff, B.J.1
  • 88
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • Kanellopoulas I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sens 18:711–725
    • (1997) Int J Remote Sens , vol.18 , pp. 711-725
    • Kanellopoulas, I.1    Wilkinson, G.G.2
  • 90
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 91
    • 0034325073 scopus 로고    scopus 로고
    • Selection of methodology for modeling hysteresis behavior of soils using neural networks
    • Baheer I (2000) Selection of methodology for modeling hysteresis behavior of soils using neural networks. J Comput Aid Civil Infrastruct Eng 5(6):445–463
    • (2000) J Comput Aid Civil Infrastruct Eng , vol.5 , Issue.6 , pp. 445-463
    • Baheer, I.1
  • 92
    • 84893973238 scopus 로고    scopus 로고
    • Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization
    • Hajihassani M, Jahed Armaghani D, Sohaei H, Mohamad ET, Marto A (2014) Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl Acoust 80:57–67
    • (2014) Appl Acoust , vol.80 , pp. 57-67
    • Hajihassani, M.1    Jahed Armaghani, D.2    Sohaei, H.3    Mohamad, E.T.4    Marto, A.5
  • 93
    • 84911806637 scopus 로고    scopus 로고
    • Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization
    • Jahed Armaghani D, Hajihassani M, Mohamad ET, Marto A, Noorani SA (2014) Blasting-induced flyrock and ground vibration prediction through an expert artificial neural network based on particle swarm optimization. Arab J Geosci 7:5383–5396
    • (2014) Arab J Geosci , vol.7 , pp. 5383-5396
    • Jahed Armaghani, D.1    Hajihassani, M.2    Mohamad, E.T.3    Marto, A.4    Noorani, S.A.5
  • 94
    • 39549084924 scopus 로고    scopus 로고
    • Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey
    • Sonmez H, Gokceoglu C (2008) Discussion on the paper by H. Gullu and E. Ercelebi, “A neural network approach for attenuation relationships: an application using strong ground motion data from Turkey. Eng Geol 97:91–93
    • (2008) Eng Geol , vol.97 , pp. 91-93
    • Sonmez, H.1    Gokceoglu, C.2
  • 95
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • Barndoff-Neilsen OE, Jensen JL, Kendall WS, (eds), Chapman & Hall, London
    • Ripley BD (1993) Statistical aspects of neural networks. In: Barndoff-Neilsen OE, Jensen JL, Kendall WS (eds) Networks and chaos-statistical and probabilistic aspects. Chapman & Hall, London, pp 40–123
    • (1993) Networks and chaos-statistical and probabilistic aspects , pp. 40-123
    • Ripley, B.D.1
  • 96
    • 0242683097 scopus 로고
    • Neural network classification of multispectral imagery
    • The University of Arizona, USA
    • Paola JD (1994) Neural network classification of multispectral imagery. MSc thesis, The University of Arizona, USA
    • (1994) MSc thesis
    • Paola, J.D.1
  • 97
    • 0347406814 scopus 로고
    • A theory of generalization in learning machines with neural application
    • The University of Pennsylvania, USA
    • Wang C (1994) A theory of generalization in learning machines with neural application. PhD thesis, The University of Pennsylvania, USA
    • (1994) PhD thesis
    • Wang, C.1
  • 99
    • 0030130753 scopus 로고    scopus 로고
    • Designing a neural network for forecasting financial and economic time series
    • Kaastra I, Boyd M (1996) Designing a neural network for forecasting financial and economic time series. Neurocomputing 10:215–236
    • (1996) Neurocomputing , vol.10 , pp. 215-236
    • Kaastra, I.1    Boyd, M.2
  • 100
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang RJS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-685
    • Jang, R.J.S.1
  • 102
    • 38349018921 scopus 로고    scopus 로고
    • MATLAB Version 7.14.0.739; Neural network toolbox for use with Matlab
    • Demuth H, Beale M, Hagan M (2009) MATLAB Version 7.14.0.739; Neural network toolbox for use with Matlab. The Mathworks
    • (2009) The Mathworks
    • Demuth, H.1    Beale, M.2    Hagan, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.