메뉴 건너뛰기




Volumn 56, Issue , 2012, Pages 100-111

Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL NEURAL NETWORK; COMPRESSIVE STRENGTH; PREDICTION; ROCK MECHANICS; UNIAXIAL STRENGTH;

EID: 84865332648     PISSN: 13651609     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijrmms.2012.07.033     Document Type: Article
Times cited : (85)

References (20)
  • 2
    • 0037934503 scopus 로고    scopus 로고
    • Comprehensive wellbore stability analysis utilizing quantitative risk assessment
    • Moos D., Peska M., Finkbeiner P., Zoback T.M. Comprehensive wellbore stability analysis utilizing quantitative risk assessment. J Pet Sci Eng 2003, 38:97-110.
    • (2003) J Pet Sci Eng , vol.38 , pp. 97-110
    • Moos, D.1    Peska, M.2    Finkbeiner, P.3    Zoback, T.M.4
  • 3
    • 85154541581 scopus 로고    scopus 로고
    • FORMEL: a step forward in strength logging. In: Proceedings of the SPE annual technical conference and exhibition;Paper SPE 36533.
    • Raaen AM, Hovem KA, Joranson H, Fjaer E. FORMEL: a step forward in strength logging. In: Proceedings of the SPE annual technical conference and exhibition; 1996. Paper SPE 36533.
    • (1996)
    • Raaen, A.M.1    Hovem, K.A.2    Joranson, H.3    Fjaer, E.4
  • 5
    • 76249108297 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural network
    • Dehghan S., Sattari Gh, Ali Abadi Ma, Chehreh Chelgani S. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural network. Min Sci Technol 2010, 20:41-46.
    • (2010) Min Sci Technol , vol.20 , pp. 41-46
    • Dehghan, S.1    Sattari, G.2    Ali Abadi, M.3    Chehreh Chelgani, S.4
  • 6
    • 78751604817 scopus 로고    scopus 로고
    • Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network
    • Cevik A., Cabalar A.F., Sezer E.A., Gokceoglu C. Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl Soft Comput 2011, 11:2587-2594.
    • (2011) Appl Soft Comput , vol.11 , pp. 2587-2594
    • Cevik, A.1    Cabalar, A.F.2    Sezer, E.A.3    Gokceoglu, C.4
  • 7
    • 33845686642 scopus 로고    scopus 로고
    • Empirical rock strength logging in boreholes penetrating sedimentary formations
    • Chang Ch Empirical rock strength logging in boreholes penetrating sedimentary formations. Geol. Environ. Scien. Chungnam National University, Daejeon 2004, 7:174-183.
    • (2004) Geol. Environ. Scien. Chungnam National University, Daejeon , vol.7 , pp. 174-183
    • Chang, C.1
  • 10
    • 60549099335 scopus 로고    scopus 로고
    • Compressional and shear wave velocity in terms of petrophysical parameters in clean formations
    • Mabrouk W.M., Pennington D. Compressional and shear wave velocity in terms of petrophysical parameters in clean formations. J Pet Sci Eng 2008, 65:62-66.
    • (2008) J Pet Sci Eng , vol.65 , pp. 62-66
    • Mabrouk, W.M.1    Pennington, D.2
  • 11
    • 0032675088 scopus 로고    scopus 로고
    • Applications of artificial neural networks in energy system
    • Kalogirou S.A. Applications of artificial neural networks in energy system. Energy Convers Manage 1999, 40:1073-1087.
    • (1999) Energy Convers Manage , vol.40 , pp. 1073-1087
    • Kalogirou, S.A.1
  • 12
    • 0033686465 scopus 로고    scopus 로고
    • Applications of artificial neural networks for energy systems
    • Kalogirou S.A. Applications of artificial neural networks for energy systems. Appl Energy 2000, 67:17-35.
    • (2000) Appl Energy , vol.67 , pp. 17-35
    • Kalogirou, S.A.1
  • 13
    • 0034192268 scopus 로고    scopus 로고
    • Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks
    • Kalogirou S.A. Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks. Appl Energy 2000, 66:63-74.
    • (2000) Appl Energy , vol.66 , pp. 63-74
    • Kalogirou, S.A.1
  • 15
    • 0032216418 scopus 로고    scopus 로고
    • Unification of neural and statistical modeling methods that combine inputs by linear projection
    • Bakshi B.R., Utojo U. Unification of neural and statistical modeling methods that combine inputs by linear projection. Comput Chem Eng 1998, 22:1859-1878.
    • (1998) Comput Chem Eng , vol.22 , pp. 1859-1878
    • Bakshi, B.R.1    Utojo, U.2
  • 16
    • 0030421740 scopus 로고    scopus 로고
    • Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network
    • Wang X, Luo R, Shao H. Designing a soft sensor for a distillation column with the fuzzy distributed radial basis function neural network. In: Proceedings of the IEEE conference on decision and control. vol. 2; 1996. p. 1714-9.
    • (1996) In: Proceedings of the IEEE conference on decision and control , vol.2 , pp. 1714-1719
    • Wang, X.1    Luo, R.2    Shao, H.3
  • 17
    • 79958792622 scopus 로고    scopus 로고
    • Development of an artificial neural network algorithm for prediction of asphaltene precipitation
    • Abedini R., Abedini A. Development of an artificial neural network algorithm for prediction of asphaltene precipitation. J Pet Sci Technol 2011, 29(15):1565-1577.
    • (2011) J Pet Sci Technol , vol.29 , Issue.15 , pp. 1565-1577
    • Abedini, R.1    Abedini, A.2
  • 18
    • 79952665748 scopus 로고    scopus 로고
    • Development of an artificial neural network model for prediction of crude oil viscosities
    • Abedini A., Abedini R. Development of an artificial neural network model for prediction of crude oil viscosities. J Pet Sci Technol 2011, 29(8):804-816.
    • (2011) J Pet Sci Technol , vol.29 , Issue.8 , pp. 804-816
    • Abedini, A.1    Abedini, R.2
  • 19
    • 85154562528 scopus 로고    scopus 로고
    • MATLAB R2010b Documentation. The MathWorks, Inc.
    • MATLAB R2010b Documentation. The MathWorks, Inc.; 2010.
    • (2010)
  • 20
    • 85154584598 scopus 로고    scopus 로고
    • Neuro Solution Documentation 6.0. NeuroDimension, Inc.
    • Neuro Solution Documentation 6.0. NeuroDimension, Inc.; 2010.
    • (2010)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.