메뉴 건너뛰기




Volumn 22, Issue 4-5, 2009, Pages 808-814

Application of two non-linear prediction tools to the estimation of tunnel boring machine performance

Author keywords

Artificial neural networks; Non linear multiple regression; Rock properties; TBM prognosis; Tunneling

Indexed keywords

BORING MACHINES (MACHINE TOOLS); BORING TOOLS; ELECTRON TUNNELING; FORECASTING; NEURAL NETWORKS; REGRESSION ANALYSIS; ROCKS; TUNNELING (EXCAVATION); TUNNELING MACHINES;

EID: 65749099794     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2009.03.007     Document Type: Article
Times cited : (254)

References (66)
  • 3
    • 0007238830 scopus 로고    scopus 로고
    • Selection of methodology for modeling hysteresis behavior of soils using neural networks
    • Baheer I. Selection of methodology for modeling hysteresis behavior of soils using neural networks. Journal Computer Aided Civil Infrastructure Engineering 5 6 (2000) 445-463
    • (2000) Journal Computer Aided Civil Infrastructure Engineering , vol.5 , Issue.6 , pp. 445-463
    • Baheer, I.1
  • 4
    • 0034564603 scopus 로고    scopus 로고
    • Aritificial neural networks: fundamentals, computing, design and application
    • Basheer I.A., and Hajmeer M. Aritificial neural networks: fundamentals, computing, design and application. Journal of Microbiological Methoda 43 (2000) 3-31
    • (2000) Journal of Microbiological Methoda , vol.43 , pp. 3-31
    • Basheer, I.A.1    Hajmeer, M.2
  • 12
    • 0038561691 scopus 로고
    • Adverse geology and TBM tunneling problems
    • Society of Mining
    • Deer D.U. Adverse geology and TBM tunneling problems. Proceedings of RETS (1981), Society of Mining 574-586
    • (1981) Proceedings of RETS , pp. 574-586
    • Deer, D.U.1
  • 13
    • 65749112530 scopus 로고    scopus 로고
    • Demuth, H, Beale, M, Hagan, M, 2005. MATLAB Version 7.3.0.267; Neural Network Toolbox for Use with Matlab. The Mathworks, 348pp
    • Demuth, H., Beale, M., Hagan, M., 2005. MATLAB Version 7.3.0.267; Neural Network Toolbox for Use with Matlab. The Mathworks, 348pp.
  • 17
    • 0036785198 scopus 로고    scopus 로고
    • A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition
    • Gokceoglu C. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology 66 (2002) 39-51
    • (2002) Engineering Geology , vol.66 , pp. 39-51
    • Gokceoglu, C.1
  • 18
    • 1242264861 scopus 로고    scopus 로고
    • A fuzzy model to predict the uniaxial compressive strength and modulus of elasticity of a problematic rock
    • Gokceoglu C., and Zorlu K. A fuzzy model to predict the uniaxial compressive strength and modulus of elasticity of a problematic rock. Engineering Applications of Artificial Intelligence 17 (2004) 61-72
    • (2004) Engineering Applications of Artificial Intelligence , vol.17 , pp. 61-72
    • Gokceoglu, C.1    Zorlu, K.2
  • 20
    • 15044352194 scopus 로고    scopus 로고
    • Assessment of shallow landslides susceptibility using artificial neural network in Jabonosa, River Basin, Venezuela
    • Gomez H., and Kavzoglu T. Assessment of shallow landslides susceptibility using artificial neural network in Jabonosa, River Basin, Venezuela. Engineering Geology 78 (2005) 11-27
    • (2005) Engineering Geology , vol.78 , pp. 11-27
    • Gomez, H.1    Kavzoglu, T.2
  • 21
    • 65749104610 scopus 로고
    • Apparatus and Method for testing rock. United State
    • Patent Office, no. 3618369, patented November 9, 1971
    • Hamilton, H.W., Handewith, H.J., 1970. Apparatus and Method for testing rock. United State Patent Office, no. 3618369, patented November 9, 1971.
    • (1970)
    • Hamilton, H.W.1    Handewith, H.J.2
  • 29
    • 0030472893 scopus 로고    scopus 로고
    • Predicting of pile bearing capacity using artificial neural networks
    • Lee I.M., and Lee J.H. Predicting of pile bearing capacity using artificial neural networks. Computer and Geotechnics 18 3 (1996) 189-200
    • (1996) Computer and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 30
    • 0142123238 scopus 로고    scopus 로고
    • Use of artificial neural network for analysis of the susceptibility to landslides at Boun, Korea
    • Lee S., Ryu J.H., Lee M.J., and Won J.S. Use of artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environmental Geology 44 (2003) 820-833
    • (2003) Environmental Geology , vol.44 , pp. 820-833
    • Lee, S.1    Ryu, J.H.2    Lee, M.J.3    Won, J.S.4
  • 32
    • 0030121244 scopus 로고    scopus 로고
    • Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes
    • Looney C.G. Advances in feed-forward neural networks: demystifying knowledge acquiring black boxes. IEEE Transactions on Knowledge and Data Engineering 8 2 (1996) 211-226
    • (1996) IEEE Transactions on Knowledge and Data Engineering , vol.8 , Issue.2 , pp. 211-226
    • Looney, C.G.1
  • 33
    • 0020735743 scopus 로고
    • Tectonic significance of Cameron's Line in the vicinity of the Hodges Complex-an imbricate thrust model for Western Connecticut
    • Merguerian C. Tectonic significance of Cameron's Line in the vicinity of the Hodges Complex-an imbricate thrust model for Western Connecticut. American Journal of Science 283 (1983) 341-368
    • (1983) American Journal of Science , vol.283 , pp. 341-368
    • Merguerian, C.1
  • 34
    • 31844434827 scopus 로고    scopus 로고
    • Stratigraphy, structural geology, and ductile- and brittle faults of New York City
    • Benimoff, A, et al, Eds, Staten Island, New York, pp
    • Merguerian, C., 1996. Stratigraphy, structural geology, and ductile- and brittle faults of New York City. In: Benimoff, A., et al. (Eds.), The Geology of New York City and Vicinity, Field Guide and Proceedings, 68th Annual Meeting, Staten Island, New York, pp. 53-77.
    • (1996) The Geology of New York City and Vicinity, Field Guide and Proceedings, 68th Annual Meeting , pp. 53-77
    • Merguerian, C.1
  • 35
    • 0242494502 scopus 로고    scopus 로고
    • Merguerian, C., Ozdemir, L., 2003. Rock mass properties and hard rock TBM penetration rate investigations, Queens Tunnel Complex, NYC Water Tunnel #3, Stage2. In: Robinson, R.A., Marquardt, J.M. (Eds.), Rapid Excavation and Tunneling Conference, pp. 1019-1036.
    • Merguerian, C., Ozdemir, L., 2003. Rock mass properties and hard rock TBM penetration rate investigations, Queens Tunnel Complex, NYC Water Tunnel #3, Stage2. In: Robinson, R.A., Marquardt, J.M. (Eds.), Rapid Excavation and Tunneling Conference, pp. 1019-1036.
  • 36
    • 0032997179 scopus 로고    scopus 로고
    • Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness
    • Meulenkamp F., and Alvarez Grima M. Application of neural networks for the prediction of the unconfined compressive strength (UCS) from Equotip hardness. International Journal of Rock Mechanics and Mining Sciences 36 1 (1999) 29-39
    • (1999) International Journal of Rock Mechanics and Mining Sciences , vol.36 , Issue.1 , pp. 29-39
    • Meulenkamp, F.1    Alvarez Grima, M.2
  • 37
    • 3042680664 scopus 로고    scopus 로고
    • Use of back propagation neural network for landslides monitoring; a case study in the higher Himalaya
    • Neupane K.M., and Achet S.H. Use of back propagation neural network for landslides monitoring; a case study in the higher Himalaya. Engineering Geology 74 (2004) 213-236
    • (2004) Engineering Geology , vol.74 , pp. 213-236
    • Neupane, K.M.1    Achet, S.H.2
  • 39
    • 33744785397 scopus 로고    scopus 로고
    • Indirect determination of weighted joint density (wJd) by empirical and fuzzy models: Supren (Eskisehir, Turkey) marbles
    • Nefeslioglu H.A., Gokceoglu C., and Sonmez H. Indirect determination of weighted joint density (wJd) by empirical and fuzzy models: Supren (Eskisehir, Turkey) marbles. Engineering Geology 85 (2006) 251-269
    • (2006) Engineering Geology , vol.85 , pp. 251-269
    • Nefeslioglu, H.A.1    Gokceoglu, C.2    Sonmez, H.3
  • 40
    • 40649084527 scopus 로고    scopus 로고
    • An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps
    • Nefeslioglu H.A., Gokceoglu C., and Sonmez H. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology 97 3-4 (2008) 171-191
    • (2008) Engineering Geology , vol.97 , Issue.3-4 , pp. 171-191
    • Nefeslioglu, H.A.1    Gokceoglu, C.2    Sonmez, H.3
  • 42
    • 0027847269 scopus 로고
    • TBM performance analysis with reference to rock properties
    • Hudson J. (Ed), Pergamon Press, New York
    • Nelson P. TBM performance analysis with reference to rock properties. In: Hudson J. (Ed). Comprehensive Rock Engineering vol. 4 (1993), Pergamon Press, New York 261-291
    • (1993) Comprehensive Rock Engineering , vol.4 , pp. 261-291
    • Nelson, P.1
  • 44
    • 65749096639 scopus 로고    scopus 로고
    • Nelson, P.P., O'Rourke, T.D., 1983. Tunnel boring machine performance in sedimentary rocks, Report to Goldberg-Zoino Associates of New York, P.C. School of Civil and Environmental of Civil Engineering, Cornell University, Ithaca, NY, 438pp.
    • Nelson, P.P., O'Rourke, T.D., 1983. Tunnel boring machine performance in sedimentary rocks, Report to Goldberg-Zoino Associates of New York, P.C. School of Civil and Environmental of Civil Engineering, Cornell University, Ithaca, NY, 438pp.
  • 45
    • 4544324798 scopus 로고    scopus 로고
    • Expert systems for applicability of tunnel boring machine in Japan
    • Okubo S., Kfukie K., and Chen W. Expert systems for applicability of tunnel boring machine in Japan. Rock Mechanics and Rock Engineering 36 4 (2003) 305-322
    • (2003) Rock Mechanics and Rock Engineering , vol.36 , Issue.4 , pp. 305-322
    • Okubo, S.1    Kfukie, K.2    Chen, W.3
  • 47
    • 0027229858 scopus 로고
    • A new model for performance prediction of hard rock TBM
    • Bowerman, L.D. et al, Eds, Boston, MA, pp
    • Rostami, J., Ozdemir, L., 1993. A new model for performance prediction of hard rock TBM. In: Bowerman, L.D. et al. (Eds.), Proceedings of RETC, Boston, MA, pp. 793-809.
    • (1993) Proceedings of RETC , pp. 793-809
    • Rostami, J.1    Ozdemir, L.2
  • 50
    • 0035251579 scopus 로고    scopus 로고
    • Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural Networks
    • Singh V.K., Singh D., and Singh T.N. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural Networks. International Journal of Rock Mechanics and Mining Sciences 38 2 (2001) 269-284
    • (2001) International Journal of Rock Mechanics and Mining Sciences , vol.38 , Issue.2 , pp. 269-284
    • Singh, V.K.1    Singh, D.2    Singh, T.N.3
  • 51
    • 33748902591 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of rock through physico-mechanical properties
    • Singh T.N., Sinha S., and Singh V.K. Prediction of thermal conductivity of rock through physico-mechanical properties. Building and Environment 42 1 (2007) 146-155
    • (2007) Building and Environment , vol.42 , Issue.1 , pp. 146-155
    • Singh, T.N.1    Sinha, S.2    Singh, V.K.3
  • 53
    • 65749096837 scopus 로고    scopus 로고
    • SPSS Inc, 2007. SPSS Regression Models version 11.5
    • SPSS Inc., 2007. SPSS Regression Models (version 11.5). 〈www.spss.com〉.
  • 58
    • 39749157693 scopus 로고    scopus 로고
    • Application of artificial neural networks for predicting the cuttability of rocks by drag tools
    • Tiryaki B. Application of artificial neural networks for predicting the cuttability of rocks by drag tools. Tunneling and Underground Space Technology 23 3 (2008) 273-280
    • (2008) Tunneling and Underground Space Technology , vol.23 , Issue.3 , pp. 273-280
    • Tiryaki, B.1
  • 62
    • 39749166977 scopus 로고    scopus 로고
    • Utilizing rock mass properties for predicting TBM performance in hard rock condition
    • Yagiz S. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology 23 (2008) 326-339
    • (2008) Tunnelling and Underground Space Technology , vol.23 , pp. 326-339
    • Yagiz, S.1
  • 63
    • 53349163498 scopus 로고    scopus 로고
    • Assesment of brittleness using rock strength and density with punch penetration test
    • Yagiz S. Assesment of brittleness using rock strength and density with punch penetration test. Tunneling and Underground Space Technology article 24 1 (2009) 64-77
    • (2009) Tunneling and Underground Space Technology article , vol.24 , Issue.1 , pp. 64-77
    • Yagiz, S.1
  • 64
    • 65749094008 scopus 로고    scopus 로고
    • Yagiz, S., Ozdemir, L., 2001. Geotechnical parameters influencing the TBM performance in various rocks. In program with abstracts. 44th Annual Meeting of AEG. Technical Session 10; Engineering Geology for Construction Practices, St. Louis. MO, USA.
    • Yagiz, S., Ozdemir, L., 2001. Geotechnical parameters influencing the TBM performance in various rocks. In program with abstracts. 44th Annual Meeting of AEG. Technical Session 10; Engineering Geology for Construction Practices, St. Louis. MO, USA.
  • 65
    • 33845488712 scopus 로고    scopus 로고
    • Tunneling performance prediction using an integrated GIS and neural network
    • Yoo C., and Kim J. Tunneling performance prediction using an integrated GIS and neural network. Computer and Geotechnics 34 (2007) 19-30
    • (2007) Computer and Geotechnics , vol.34 , pp. 19-30
    • Yoo, C.1    Kim, J.2
  • 66
    • 38349077120 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength of sandstones using petrography-based models
    • Zorlu K., Gokceoglu C., Ocakoglu F., Nefeslioglu H.A., and Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Engineering Geology 96 (2008) 141-158
    • (2008) Engineering Geology , vol.96 , pp. 141-158
    • Zorlu, K.1    Gokceoglu, C.2    Ocakoglu, F.3    Nefeslioglu, H.A.4    Acikalin, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.