메뉴 건너뛰기




Volumn 57, Issue , 2014, Pages 122-131

Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN

Author keywords

Artificial neural network; Dynamic load test; Genetic algorithm; Pile bearing capacity

Indexed keywords

ALGORITHMS; BEARING CAPACITY; DYNAMIC LOADS; FORECASTING; GENETIC ALGORITHMS; GLOBAL OPTIMIZATION; LOAD TESTING; NETWORK ARCHITECTURE; NEURAL NETWORKS; PRECAST CONCRETE; STATISTICAL TESTS; MEAN SQUARE ERROR; SENSITIVITY ANALYSIS;

EID: 84906825852     PISSN: 02632241     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.measurement.2014.08.007     Document Type: Article
Times cited : (343)

References (50)
  • 1
    • 0016928323 scopus 로고
    • Bearing capacity and settlement of pile foundations
    • G.G. Meyerhoff Bearing capacity and settlement of pile foundations J. Geotech. En. ASCE 102 1976 196 228
    • (1976) J. Geotech. En. ASCE , vol.102 , pp. 196-228
    • Meyerhoff, G.G.1
  • 2
    • 0019596045 scopus 로고
    • New design correlations for piles in sand
    • H.M. Coyle, and R.R. Castello New design correlations for piles in sand J. Geotech. Eng. ASCE 107 1981 965 986
    • (1981) J. Geotech. Eng. ASCE , vol.107 , pp. 965-986
    • Coyle, H.M.1    Castello, R.R.2
  • 3
    • 42649144477 scopus 로고    scopus 로고
    • Application of a continuum numerical model for pile driving analysis and comparison with a real case
    • DOI 10.1016/j.compgeo.2007.08.009, PII S0266352X0700095X
    • S.M. Feizee, and K. Fakharian Application of continuum numerical model for pile driving analysis and comparison with a real case Comput. Geotech. 35 2008 406 418 (Pubitemid 351597852)
    • (2008) Computers and Geotechnics , vol.35 , Issue.3 , pp. 406-418
    • Feizee Masouleh, S.1    Fakharian, K.2
  • 4
    • 84877606170 scopus 로고    scopus 로고
    • Comparative study on prediction of axial bearing capacity of driven piles in granular material
    • E. Momeni, H. Maizir, N. Gofar, and R. Nazir Comparative study on prediction of axial bearing capacity of driven piles in granular material J. Teknologi. 61 3 2013 15 20
    • (2013) J. Teknologi. , vol.61 , Issue.3 , pp. 15-20
    • Momeni, E.1    Maizir, H.2    Gofar, N.3    Nazir, R.4
  • 8
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network application in geotechnical engineering
    • M.A. Shahin, M.B. Jaksa, and H.R. Maier Artificial neural network application in geotechnical engineering Australian Geomech. 36 2001 49 62
    • (2001) Australian Geomech. , vol.36 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 9
    • 84884353135 scopus 로고    scopus 로고
    • Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology
    • M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, and A. Asghari Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology Ultrason. Sonochem. 21 2014 242 252
    • (2014) Ultrason. Sonochem. , vol.21 , pp. 242-252
    • Roosta, M.1    Ghaedi, M.2    Daneshfar, A.3    Sahraei, R.4    Asghari, A.5
  • 10
    • 84887615544 scopus 로고    scopus 로고
    • Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: Kinetics and isotherm study
    • M. Ghaedi, A. Ansari, M.H. Habibi, and A.R. Asghari Removal of malachite green from aqueous solution by zinc oxide nanoparticle loaded on activated carbon: kinetics and isotherm study J. Ind. Eng. Chem. 20 2014 17 28
    • (2014) J. Ind. Eng. Chem. , vol.20 , pp. 17-28
    • Ghaedi, M.1    Ansari, A.2    Habibi, M.H.3    Asghari, A.R.4
  • 11
    • 84883689865 scopus 로고    scopus 로고
    • Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: Experimental design
    • M. Roosta, M. Ghaedi, N. Shokri, A. Daneshfar, R. Sahraei, and A. Asghari Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design Spectrochim. Acta. A 118 2014 55 65
    • (2014) Spectrochim. Acta. A , vol.118 , pp. 55-65
    • Roosta, M.1    Ghaedi, M.2    Shokri, N.3    Daneshfar, A.4    Sahraei, R.5    Asghari, A.6
  • 12
    • 84922465299 scopus 로고    scopus 로고
    • A review of artificial intelligence applications in shallow foundations
    • http://dx.doi.org/10.1179/1939787914Y.0000000058
    • M.A. Shahin A review of artificial intelligence applications in shallow foundations Int. J. Geotech. Eng. 2014 http://dx.doi.org/10.1179/1939787914Y. 0000000058
    • (2014) Int. J. Geotech. Eng.
    • Shahin, M.A.1
  • 14
    • 0031126911 scopus 로고    scopus 로고
    • Prediction of pile capacity using neural networks
    • C. Teh, K.S. Wong, and A.T.C. Goh et al. Prediction of pile capacity using neural networks J. Comput. Civil. Eng. 11 1997 129 138
    • (1997) J. Comput. Civil. Eng. , vol.11 , pp. 129-138
    • Teh, C.1    Wong, K.S.2    Goh, A.T.C.3
  • 15
    • 0029223565 scopus 로고
    • Back-propagation neural networks for modeling complex systems
    • A.T.C. Goh Back-propagation neural networks for modeling complex systems Artif. Intel. Eng. 9 1995 143 151
    • (1995) Artif. Intel. Eng. , vol.9 , pp. 143-151
    • Goh, A.T.C.1
  • 16
    • 0030414004 scopus 로고    scopus 로고
    • Pile driving records reanalyzed using neural networks
    • A.T. Goh Pile driving records reanalyzed using neural networks J. Geotech. Eng. 122 1996 492 495
    • (1996) J. Geotech. Eng. , vol.122 , pp. 492-495
    • Goh, A.T.1
  • 17
    • 45749119086 scopus 로고    scopus 로고
    • Modeling pile capacity using support vector machines and generalized regression neural network
    • DOI 10.1061/(ASCE)1090-0241(2008)134:7(1021)
    • M. Pal, and S. Deswal Modeling pile capacity using support vector machines and generalized regression neural network J. Geotech. Geoenviron. Eng. 134 2008 1021 1024 (Pubitemid 351865546)
    • (2008) Journal of Geotechnical and Geoenvironmental Engineering , vol.134 , Issue.7 , pp. 1021-1024
    • Pal, M.1    Deswal, S.2
  • 18
    • 85042411873 scopus 로고    scopus 로고
    • Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks
    • A. Benali, and A. Nechnech Prediction of the pile capacity in purely coherent soils using the approach of the artificial neural networks Innovat. Valorat. Civil Eng. Construct. Mater., Marocco 2011 23 25
    • (2011) Innovat. Valorat. Civil Eng. Construct. Mater., Marocco , pp. 23-25
    • Benali, A.1    Nechnech, A.2
  • 19
    • 33847646370 scopus 로고    scopus 로고
    • Prediction of settlement of shallow foundations on reinforced soils using neural networks
    • DOI 10.1680/gein.2006.13.4.161
    • A. Soleimanbeigi, and N. Hataf Prediction of settlement of shallow foundations on reinforced soils using neural networks Geosynth. Int. 13 2006 161 170 (Pubitemid 46357711)
    • (2006) Geosynthetics International , vol.13 , Issue.4 , pp. 161-170
    • Soleimanbeigi, A.1    Hataf, N.2
  • 20
    • 36749010178 scopus 로고    scopus 로고
    • Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
    • DOI 10.1016/j.compgeo.2007.03.001, PII S0266352X07000420
    • D. Padmini, K. Ilamparuthi, and K. Sudheer Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models Comput. Geotech. 35 2008 33 46 (Pubitemid 350215245)
    • (2008) Computers and Geotechnics , vol.35 , Issue.1 , pp. 33-46
    • Padmini, D.1    Ilamparuthi, K.2    Sudheer, K.P.3
  • 21
    • 84864853226 scopus 로고    scopus 로고
    • Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil
    • M. Ornek, M. Laman, and A. Demir et al. Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil Soil. Found. 52 2012 69 80
    • (2012) Soil. Found. , vol.52 , pp. 69-80
    • Ornek, M.1    Laman, M.2    Demir, A.3
  • 22
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • DOI 10.1061/(ASCE)1090-0241(1998)124:12(1177)
    • M.A. Kiefa General regression neural networks for driven piles in cohesionless soils J. Geotech. Geoenviron. Eng. 194 1998 1177 1185 (Pubitemid 29103310)
    • (1998) Journal of Geotechnical and Geoenvironmental Engineering , vol.124 , Issue.12 , pp. 1177-1185
    • Abu Kiefa, M.A.1
  • 24
    • 78649263010 scopus 로고    scopus 로고
    • An ANN Model for Predicting Level Ultimate Bearing Capacity of PHC Pipe Pile, Gangbing Song, RameshB
    • Z. Jianbin, T. Jiewen, S. Yongqiang, An ANN Model for Predicting Level Ultimate Bearing Capacity of PHC Pipe Pile, Gangbing Song, RameshB. Malla. Earth and Space, 2010, pp. 3168-3176.
    • (2010) Malla. Earth and Space , pp. 3168-3176
    • Jianbin, Z.1    Jiewen, T.2    Yongqiang, S.3
  • 25
    • 0026711747 scopus 로고
    • General asymmetric neural networks and structure design by genetic algorithms
    • S. Bornholdt, and D. Graudenz General asymmetric neural networks and structure design by genetic algorithms Neural. Networks 5 1992 327 334
    • (1992) Neural. Networks , vol.5 , pp. 327-334
    • Bornholdt, S.1    Graudenz, D.2
  • 27
    • 34548671418 scopus 로고    scopus 로고
    • Design of neural networks using genetic algorithm for the permeability estimation of the reservoir
    • DOI 10.1016/j.petrol.2007.03.007, PII S0920410507000472
    • M. Saemi, M. Ahmadi, and A.Y. Varjani Design of neural networks using genetic algorithm for the permeability estimation of the reservoir J. Petrol. Sci. Eng. 59 2007 97 105 (Pubitemid 47413004)
    • (2007) Journal of Petroleum Science and Engineering , vol.59 , Issue.1-2 , pp. 97-105
    • Saemi, M.1    Ahmadi, M.2    Varjani, A.Y.3
  • 31
    • 0021384065 scopus 로고
    • Wave equation analysis and dynamic monitoring
    • B.H. Fellenius Wave equation analysis and dynamic monitoring Deep. Found. J 1 1984 49 55
    • (1984) Deep. Found. J , vol.1 , pp. 49-55
    • Fellenius, B.H.1
  • 32
    • 0022024624 scopus 로고
    • Dynamic determination of pile capacity
    • F. Rausche, and G. Likins Dynamic determination of pile capacity J. Geotech. Eng. 3 1985 367 383
    • (1985) J. Geotech. Eng. , vol.3 , pp. 367-383
    • Rausche, F.1    Likins, G.2
  • 34
    • 84906828529 scopus 로고    scopus 로고
    • Design and Construction of Driven Foundations
    • FHWA FHWA-HRT, Washington, DC
    • FHWA, Design and Construction of Driven Foundations, in Lesson Learned on the Central Artery/Tunnel Project., FHWA-HRT, Washington, DC, 2006.
    • (2006) Lesson Learned on the Central Artery/Tunnel Project
  • 35
    • 84929989295 scopus 로고
    • Where and why artificial neural networks are applicable in civil engineering
    • J. Garrett Where and why artificial neural networks are applicable in civil engineering J. Comput. Civil. Eng. 8 1994 129 130
    • (1994) J. Comput. Civil. Eng. , vol.8 , pp. 129-130
    • Garrett, J.1
  • 41
  • 43
    • 84906825440 scopus 로고    scopus 로고
    • Research of agricultural land classification and evaluation based on genetic algorithm optimized neural network model
    • Springer pp. 465-471
    • L. TingXiang, Z. ShuWen, and W. QuanYuan et al. Research of agricultural land classification and evaluation based on genetic algorithm optimized neural network model Software Engineering and Knowledge Engineering: Theory and Practice 2012 Springer pp. 465-471
    • (2012) Software Engineering and Knowledge Engineering: Theory and Practice
    • Tingxiang, L.1    Shuwen, Z.2    Quanyuan, W.3
  • 44
    • 76349098222 scopus 로고    scopus 로고
    • Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses
    • A. Majdi, and M. Beiki Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses Int. J. Rock. Mech. Min. Sci. 47 2010 246 253
    • (2010) Int. J. Rock. Mech. Min. Sci. , vol.47 , pp. 246-253
    • Majdi, A.1    Beiki, M.2
  • 45
    • 84880167968 scopus 로고    scopus 로고
    • Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network
    • V. Rashidian, and M. Hassanlourad Predicting the shear behavior of cemented and uncemented carbonate sands using a genetic algorithm-based artificial neural network Geotech. Geol. Eng. 2 2013 1 18
    • (2013) Geotech. Geol. Eng. , vol.2 , pp. 1-18
    • Rashidian, V.1    Hassanlourad, M.2
  • 48
    • 0028543366 scopus 로고
    • Training feed forward networks with the Marquardt algorithm
    • M.T. Hagan, and M.B. Menhaj Training feed forward networks with the Marquardt algorithm IEEE Trans. Neural Networks 5 1994 861 867
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 861-867
    • Hagan, M.T.1    Menhaj, M.B.2
  • 50
    • 0031246162 scopus 로고    scopus 로고
    • A hierarchical analysis for rock engineering using artificial neural networks
    • Y. Yang, and O. Zang A hierarchical analysis for rock engineering using artificial neural networks Rock. Mech. Rock. Eng. 30 1997 207 222
    • (1997) Rock. Mech. Rock. Eng. , vol.30 , pp. 207-222
    • Yang, Y.1    Zang, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.