-
1
-
-
0000160454
-
Experimental Relations of Gold (and Other Metals) to Light
-
Faraday, M. Experimental Relations of Gold (and Other Metals) to Light Philos. Trans. 1857, 147, 145-181 10.1098/rstl.1857.0011
-
(1857)
Philos. Trans.
, vol.147
, pp. 145-181
-
-
Faraday, M.1
-
2
-
-
33644642166
-
Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes
-
Eustis, S.; El-Sayed, M. A. Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shapes Chem. Soc. Rev. 2006, 35, 209-217 10.1039/B514191E
-
(2006)
Chem. Soc. Rev.
, vol.35
, pp. 209-217
-
-
Eustis, S.1
El-Sayed, M.A.2
-
3
-
-
0742321804
-
Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology
-
Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology Chem. Rev. 2004, 104, 293-346 10.1021/cr030698+
-
(2004)
Chem. Rev.
, vol.104
, pp. 293-346
-
-
Daniel, M.-C.1
Astruc, D.2
-
4
-
-
23844447267
-
Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications
-
Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications J. Phys. Chem. B 2005, 109, 13857-13870 10.1021/jp0516846
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 13857-13870
-
-
Murphy, C.J.1
Sau, T.K.2
Gole, A.M.3
Orendorff, C.J.4
Gao, J.5
Gou, L.6
Hunyadi, S.E.7
Li, T.8
-
5
-
-
80053181578
-
Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer
-
Bardhan, R.; Lal, S.; Joshi, A.; Halas, N. J. Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer Acc. Chem. Res. 2011, 44, 936-946 10.1021/ar200023x
-
(2011)
Acc. Chem. Res.
, vol.44
, pp. 936-946
-
-
Bardhan, R.1
Lal, S.2
Joshi, A.3
Halas, N.J.4
-
6
-
-
58149092374
-
Gold Nanocages: Synthesis, Properties, and Applications
-
Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y. Gold Nanocages: Synthesis, Properties, and Applications Acc. Chem. Res. 2008, 41, 1587-1595 10.1021/ar800018v
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 1587-1595
-
-
Skrabalak, S.E.1
Chen, J.2
Sun, Y.3
Lu, X.4
Au, L.5
Cobley, C.M.6
Xia, Y.7
-
7
-
-
84861058714
-
Gold Nanoparticles in Chemical and Biological Sensing
-
Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing Chem. Rev. 2012, 112, 2739-2779 10.1021/cr2001178
-
(2012)
Chem. Rev.
, vol.112
, pp. 2739-2779
-
-
Saha, K.1
Agasti, S.S.2
Kim, C.3
Li, X.4
Rotello, V.M.5
-
8
-
-
58149102337
-
Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging
-
Murphy, C. J.; Gole, A. M.; Stone, J. W.; Sisco, P. N.; Alkilany, A. M.; Goldsmith, E. C.; Baxter, S. C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging Acc. Chem. Res. 2008, 41, 1721-1730 10.1021/ar800035u
-
(2008)
Acc. Chem. Res.
, vol.41
, pp. 1721-1730
-
-
Murphy, C.J.1
Gole, A.M.2
Stone, J.W.3
Sisco, P.N.4
Alkilany, A.M.5
Goldsmith, E.C.6
Baxter, S.C.7
-
9
-
-
46749122210
-
Gold Nanoparticles in Delivery Applications
-
Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Gold Nanoparticles in Delivery Applications Adv. Drug Delivery Rev. 2008, 60, 1307-1315 10.1016/j.addr.2008.03.016
-
(2008)
Adv. Drug Delivery Rev.
, vol.60
, pp. 1307-1315
-
-
Ghosh, P.1
Han, G.2
De, M.3
Kim, C.K.4
Rotello, V.M.5
-
10
-
-
84857250783
-
Gold Nanoparticles as Novel Agents for Cancer Therapy
-
Jain, S.; Hirst, D. G.; O'Sullivan, J. M. Gold Nanoparticles as Novel Agents for Cancer Therapy Br. J. Radiol. 2012, 85, 101-113 10.1259/bjr/59448833
-
(2012)
Br. J. Radiol.
, vol.85
, pp. 101-113
-
-
Jain, S.1
Hirst, D.G.2
O'Sullivan, J.M.3
-
11
-
-
84858676731
-
The Golden Age: Gold Nanoparticles for Biomedicine
-
Dreaden, E. C.; Alkilany, A. M.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The Golden Age: Gold Nanoparticles for Biomedicine Chem. Soc. Rev. 2012, 41, 2740-2779 10.1039/C1CS15237H
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2740-2779
-
-
Dreaden, E.C.1
Alkilany, A.M.2
Huang, X.3
Murphy, C.J.4
El-Sayed, M.A.5
-
12
-
-
36948998624
-
Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications
-
Ghosh, S. K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications Chem. Rev. 2007, 107, 4797-4862 10.1021/cr0680282
-
(2007)
Chem. Rev.
, vol.107
, pp. 4797-4862
-
-
Ghosh, S.K.1
Pal, T.2
-
13
-
-
0000817598
-
Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles
-
Link, S.; El-Sayed, M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles J. Phys. Chem. B 1999, 103, 4212-4217 10.1021/jp984796o
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 4212-4217
-
-
Link, S.1
El-Sayed, M.A.2
-
14
-
-
28944447234
-
Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment
-
Miller, M. M.; Lazarides, A. A. Sensitivity of Metal Nanoparticle Surface Plasmon Resonance to the Dielectric Environment J. Phys. Chem. B 2005, 109, 21556-21565 10.1021/jp054227y
-
(2005)
J. Phys. Chem. B
, vol.109
, pp. 21556-21565
-
-
Miller, M.M.1
Lazarides, A.A.2
-
15
-
-
0040245935
-
Surface Plasmon Spectroscopy of Nanosized Metal Particles
-
Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles Langmuir 1996, 12, 788-800 10.1021/la9502711
-
(1996)
Langmuir
, vol.12
, pp. 788-800
-
-
Mulvaney, P.1
-
16
-
-
0028521638
-
Effect of the Solution Refractive Index on the Color of Gold Colloids
-
Underwood, S.; Mulvaney, P. Effect of the Solution Refractive Index on the Color of Gold Colloids Langmuir 1994, 10, 3427-3430 10.1021/la00022a011
-
(1994)
Langmuir
, vol.10
, pp. 3427-3430
-
-
Underwood, S.1
Mulvaney, P.2
-
17
-
-
33646228165
-
Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine
-
Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine J. Phys. Chem. B 2006, 110, 7238-7248 10.1021/jp057170o
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 7238-7248
-
-
Jain, P.K.1
Lee, K.S.2
El-Sayed, I.H.3
El-Sayed, M.A.4
-
18
-
-
84906696517
-
Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods
-
Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J. Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods ACS Nano 2014, 8, 8392-8406 10.1021/nn502887j
-
(2014)
ACS Nano
, vol.8
, pp. 8392-8406
-
-
Abadeer, N.S.1
Brennan, M.R.2
Wilson, W.L.3
Murphy, C.J.4
-
19
-
-
0033653747
-
Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals
-
Link, S.; El-Sayed, M. A. Shape and Size Dependence of Radiative, Non-Radiative and Photothermal Properties of Gold Nanocrystals Int. Rev. Phys. Chem. 2000, 19, 409-453 10.1080/01442350050034180
-
(2000)
Int. Rev. Phys. Chem.
, vol.19
, pp. 409-453
-
-
Link, S.1
El-Sayed, M.A.2
-
20
-
-
84960892630
-
Photothermal Properties and Applications of Gold Nanorods
-
University of Illinois, Urbana, IL
-
Huang, J. Photothermal Properties and Applications of Gold Nanorods. Ph.D. Thesis, University of Illinois, Urbana, IL, 2014.
-
(2014)
Ph.D. Thesis
-
-
Huang, J.1
-
21
-
-
45849139679
-
Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles
-
Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic Photothermal Therapy (PPTT) Using Gold Nanoparticles Lasers Med. Sci. 2008, 23, 217-228 10.1007/s10103-007-0470-x
-
(2008)
Lasers Med. Sci.
, vol.23
, pp. 217-228
-
-
Huang, X.1
Jain, P.K.2
El-Sayed, I.H.3
El-Sayed, M.A.4
-
22
-
-
0345867326
-
Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence
-
Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence J. Phys. Chem. A 1999, 103, 1165-1170 10.1021/jp983141k
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 1165-1170
-
-
Link, S.1
Burda, C.2
Mohamed, M.B.3
Nikoobakht, B.4
El-Sayed, M.A.5
-
23
-
-
0018721608
-
Hyperthermia in the Treatment of Cancer
-
Field, S. B.; Bleehen, N. M. Hyperthermia in the Treatment of Cancer Cancer Treat. Rev. 1979, 6, 63-94 10.1016/S0305-7372(79)80043-2
-
(1979)
Cancer Treat. Rev.
, vol.6
, pp. 63-94
-
-
Field, S.B.1
Bleehen, N.M.2
-
24
-
-
0021177857
-
Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques
-
Cheung, A. Y.; Neyzari, A. Deep Local Hyperthermia for Cancer Therapy: External Electromagnetic and Ultrasound Techniques Cancer Res. 1984, 44, 4736-4744
-
(1984)
Cancer Res.
, vol.44
, pp. 4736-4744
-
-
Cheung, A.Y.1
Neyzari, A.2
-
25
-
-
77956898329
-
Hyperthermia for Locally Advanced Breast Cancer
-
Zagar, T. M.; Oleson, J. R.; Vujaskovic, Z.; Dewhirst, M. W.; Craciunescu, O. I.; Blackwell, K. L.; Prosnitz, L. R.; Jones, E. L. Hyperthermia for Locally Advanced Breast Cancer Int. J. Hyperthermia 2010, 26, 618-624 10.3109/02656736.2010.501051
-
(2010)
Int. J. Hyperthermia
, vol.26
, pp. 618-624
-
-
Zagar, T.M.1
Oleson, J.R.2
Vujaskovic, Z.3
Dewhirst, M.W.4
Craciunescu, O.I.5
Blackwell, K.L.6
Prosnitz, L.R.7
Jones, E.L.8
-
26
-
-
0027413078
-
Sensitivity of Hyperthermia Trial Outcomes to Temperature and Time: Implications for Thermal Goals of Treatment
-
Oleson, J. R.; Samulski, T. V.; Leopold, K. A.; Clegg, S. T.; Dewhirst, M. W.; Dodge, R. K.; George, S. L. Sensitivity of Hyperthermia Trial Outcomes to Temperature and Time: Implications for Thermal Goals of Treatment Int. J. Radiat. Oncol., Biol., Phys. 1993, 25, 289-297 10.1016/0360-3016(93)90351-U
-
(1993)
Int. J. Radiat. Oncol., Biol., Phys.
, vol.25
, pp. 289-297
-
-
Oleson, J.R.1
Samulski, T.V.2
Leopold, K.A.3
Clegg, S.T.4
Dewhirst, M.W.5
Dodge, R.K.6
George, S.L.7
-
27
-
-
70349898482
-
Nanoparticles for Thermal Cancer Therapy
-
Day, E. S.; Morton, J. G.; West, J. L. Nanoparticles for Thermal Cancer Therapy J. Biomech. Eng. 2009, 131, 074001 10.1115/1.3156800
-
(2009)
J. Biomech. Eng.
, vol.131
, pp. 074001
-
-
Day, E.S.1
Morton, J.G.2
West, J.L.3
-
28
-
-
0036339812
-
Hyperthermia in Combined Treatment of Cancer
-
Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in Combined Treatment of Cancer Lancet Oncol. 2002, 3, 487-497 10.1016/S1470-2045(02)00818-5
-
(2002)
Lancet Oncol.
, vol.3
, pp. 487-497
-
-
Wust, P.1
Hildebrandt, B.2
Sreenivasa, G.3
Rau, B.4
Gellermann, J.5
Riess, H.6
Felix, R.7
Schlag, P.M.8
-
29
-
-
21744445069
-
Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications
-
Ciocca, D. R.; Calderwood, S. K. Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications Cell Stress Chaperones 2005, 10, 86-103 10.1379/CSC-99r.1
-
(2005)
Cell Stress Chaperones
, vol.10
, pp. 86-103
-
-
Ciocca, D.R.1
Calderwood, S.K.2
-
30
-
-
38649094249
-
Heat Shock Proteins: Stress Proteins with Janus-Like Properties in Cancer
-
Calderwood, S. K.; Ciocca, D. R. Heat Shock Proteins: Stress Proteins with Janus-Like Properties in Cancer Int. J. Hyperthermia 2008, 24, 31-39 10.1080/02656730701858305
-
(2008)
Int. J. Hyperthermia
, vol.24
, pp. 31-39
-
-
Calderwood, S.K.1
Ciocca, D.R.2
-
31
-
-
0345686712
-
Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance
-
Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors Under Magnetic Resonance Guidance Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 13549-13554 10.1073/pnas.2232479100
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 13549-13554
-
-
Hirsch, L.R.1
Stafford, R.J.2
Bankson, J.A.3
Sershen, S.R.4
Rivera, B.5
Price, R.E.6
Hazle, J.D.7
Halas, N.J.8
West, J.L.9
-
32
-
-
33645154492
-
Metal Nanoshells
-
Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, N. J. Metal Nanoshells Ann. Biomed. Eng. 2006, 34, 15-22 10.1007/s10439-005-9001-8
-
(2006)
Ann. Biomed. Eng.
, vol.34
, pp. 15-22
-
-
Hirsch, L.R.1
Gobin, A.M.2
Lowery, A.R.3
Tam, F.4
Drezek, R.A.5
Halas, N.J.6
West, N.J.7
-
33
-
-
2442692534
-
Photo-Thermal Tumor Ablation in Mice Using Near-Infrared-Absorbing Nanoparticles
-
O'Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Photo-Thermal Tumor Ablation in Mice Using Near-Infrared-Absorbing Nanoparticles Cancer Lett. 2004, 209, 171-176 10.1016/j.canlet.2004.02.004
-
(2004)
Cancer Lett.
, vol.209
, pp. 171-176
-
-
O'Neal, D.P.1
Hirsch, L.R.2
Halas, N.J.3
Payne, J.D.4
West, J.L.5
-
34
-
-
33646257222
-
Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using anti-EGFR Antibody Conjugated Gold Nanoparticles
-
El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Selective Laser Photo-Thermal Therapy of Epithelial Carcinoma Using anti-EGFR Antibody Conjugated Gold Nanoparticles Cancer Lett. 2006, 239, 129-135 10.1016/j.canlet.2005.07.035
-
(2006)
Cancer Lett.
, vol.239
, pp. 129-135
-
-
El-Sayed, I.H.1
Huang, X.2
El-Sayed, M.A.3
-
35
-
-
19944401541
-
Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer
-
El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Surface Plasmon Resonance Scattering and Absorption of anti-EGFR Antibody Conjugated Gold Nanoparticles in Cancer Diagnostics: Applications in Oral Cancer Nano Lett. 2005, 5, 829-834 10.1021/nl050074e
-
(2005)
Nano Lett.
, vol.5
, pp. 829-834
-
-
El-Sayed, I.H.1
Huang, X.2
El-Sayed, M.A.3
-
36
-
-
33244457595
-
Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods
-
Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods J. Am. Chem. Soc. 2006, 128, 2115-2120 10.1021/ja057254a
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 2115-2120
-
-
Huang, X.1
El-Sayed, I.H.2
Qian, W.3
El-Sayed, M.A.4
-
37
-
-
84878281250
-
A Simple Millifluidic Benchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes
-
Lohse, S. E.; Eller, J. R.; Sivapalan, S. T.; Plews, M. R.; Murphy, C. J. A Simple Millifluidic Benchtop Reactor System for the High-Throughput Synthesis and Functionalization of Gold Nanoparticles with Different Sizes and Shapes ACS Nano 2013, 7, 4135-4150 10.1021/nn4005022
-
(2013)
ACS Nano
, vol.7
, pp. 4135-4150
-
-
Lohse, S.E.1
Eller, J.R.2
Sivapalan, S.T.3
Plews, M.R.4
Murphy, C.J.5
-
38
-
-
84860477100
-
Size-Controlled Flow Synthesis of Gold Nanoparticles Using a Segmented Flow Microfluidic Platform
-
Cabeza, V. S.; Kuhn, S.; Kulkarni, A. A.; Jensen, K. F. Size-Controlled Flow Synthesis of Gold Nanoparticles Using a Segmented Flow Microfluidic Platform Langmuir 2012, 28, 7007-7013 10.1021/la205131e
-
(2012)
Langmuir
, vol.28
, pp. 7007-7013
-
-
Cabeza, V.S.1
Kuhn, S.2
Kulkarni, A.A.3
Jensen, K.F.4
-
39
-
-
28044446787
-
Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview
-
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview Langmuir 2005, 21, 10644-10654 10.1021/la0513712
-
(2005)
Langmuir
, vol.21
, pp. 10644-10654
-
-
Shukla, R.1
Bansal, V.2
Chaudhary, M.3
Basu, A.4
Bhonde, R.R.5
Sastry, M.6
-
40
-
-
77956274546
-
Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned so Far?
-
Alkilany, A. M.; Murphy, C. J. Toxicity and Cellular Uptake of Gold Nanoparticles: What We Have Learned so Far? J. Nanopart. Res. 2010, 12, 2313-2333 10.1007/s11051-010-9911-8
-
(2010)
J. Nanopart. Res.
, vol.12
, pp. 2313-2333
-
-
Alkilany, A.M.1
Murphy, C.J.2
-
41
-
-
84931093538
-
Global Transcriptomic Analysis of Model Human Cell Lines Exposed to Surface-Modified Gold Nanoparticles: The Effect of Surface Chemistry
-
Grzincic, E. M.; Yang, J. A.; Drnevich, J.; Falagan-Lotsch, P.; Murphy, C. J. Global Transcriptomic Analysis of Model Human Cell Lines Exposed to Surface-Modified Gold Nanoparticles: The Effect of Surface Chemistry Nanoscale 2015, 7, 1349-1362 10.1039/C4NR05166A
-
(2015)
Nanoscale
, vol.7
, pp. 1349-1362
-
-
Grzincic, E.M.1
Yang, J.A.2
Drnevich, J.3
Falagan-Lotsch, P.4
Murphy, C.J.5
-
42
-
-
84877294313
-
Nanovacuums: Nanoparticle Uptake and Differential Cellular Migration on a Carpet of Nanoparticles
-
Yang, J. A.; Phan, H. T.; Vaidya, S.; Murphy, C. J. Nanovacuums: Nanoparticle Uptake and Differential Cellular Migration on a Carpet of Nanoparticles Nano Lett. 2013, 13, 2295-2302 10.1021/nl400972r
-
(2013)
Nano Lett.
, vol.13
, pp. 2295-2302
-
-
Yang, J.A.1
Phan, H.T.2
Vaidya, S.3
Murphy, C.J.4
-
43
-
-
25444448098
-
Gold Nanoparticles are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity
-
Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. Gold Nanoparticles are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity Small 2005, 1, 325-327 10.1002/smll.200400093
-
(2005)
Small
, vol.1
, pp. 325-327
-
-
Connor, E.E.1
Mwamuka, J.2
Gole, A.3
Murphy, C.J.4
Wyatt, M.D.5
-
44
-
-
68949220782
-
The Effects of PEG Grafting Level and Injection Dose on Gold Nanorod Biodistribution in the Tumor-Bearing Mice
-
Akiyama, Y.; Mori, T.; Katayama, Y.; Niidome, T. The Effects of PEG Grafting Level and Injection Dose on Gold Nanorod Biodistribution in the Tumor-Bearing Mice J. Controlled Release 2009, 139, 81-84 10.1016/j.jconrel.2009.06.006
-
(2009)
J. Controlled Release
, vol.139
, pp. 81-84
-
-
Akiyama, Y.1
Mori, T.2
Katayama, Y.3
Niidome, T.4
-
45
-
-
78049452610
-
Delivering Nanomedicine to Solid Tumors
-
Jain, R. K.; Stylianopoulos, T. Delivering Nanomedicine to Solid Tumors Nat. Rev. Clin. Oncol. 2010, 7, 653-664 10.1038/nrclinonc.2010.139
-
(2010)
Nat. Rev. Clin. Oncol.
, vol.7
, pp. 653-664
-
-
Jain, R.K.1
Stylianopoulos, T.2
-
46
-
-
75549087322
-
Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles
-
Decuzzi, P.; Godin, B.; Tanaka, T.; Lee, S.-Y.; Chiappini, C.; Liu, X.; Ferrari, M. Size and Shape Effects in the Biodistribution of Intravascularly Injected Particles J. Controlled Release 2010, 141, 320-327 10.1016/j.jconrel.2009.10.014
-
(2010)
J. Controlled Release
, vol.141
, pp. 320-327
-
-
Decuzzi, P.1
Godin, B.2
Tanaka, T.3
Lee, S.-Y.4
Chiappini, C.5
Liu, X.6
Ferrari, M.7
-
47
-
-
79951921750
-
Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of in vitro and in vivo Studies
-
Khlebtsov, N.; Dykman, L. Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of In vitro and In vivo Studies Chem. Soc. Rev. 2011, 40, 1647-1671 10.1039/C0CS00018C
-
(2011)
Chem. Soc. Rev.
, vol.40
, pp. 1647-1671
-
-
Khlebtsov, N.1
Dykman, L.2
-
48
-
-
61649105001
-
Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer
-
Popovtzer, R.; Agrawal, A.; Kotov, N. A.; Popovtzer, A.; Balter, J.; Carey, T. E.; Kopelman, R. Targeted Gold Nanoparticles Enable Molecular CT Imaging of Cancer Nano Lett. 2008, 8, 4593-4596 10.1021/nl8029114
-
(2008)
Nano Lett.
, vol.8
, pp. 4593-4596
-
-
Popovtzer, R.1
Agrawal, A.2
Kotov, N.A.3
Popovtzer, A.4
Balter, J.5
Carey, T.E.6
Kopelman, R.7
-
49
-
-
77955542791
-
A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer
-
Kim, D.; Jeong, Y. Y.; Jon, S. A Drug-Loaded Aptamer-Gold Nanoparticle Bioconjugate for Combined CT Imaging and Therapy of Prostate Cancer ACS Nano 2010, 4, 3689-3696 10.1021/nn901877h
-
(2010)
ACS Nano
, vol.4
, pp. 3689-3696
-
-
Kim, D.1
Jeong, Y.Y.2
Jon, S.3
-
50
-
-
55549144337
-
Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods
-
Huang, Y.-F.; Sefah, K.; Bamrungsap, S.; Chang, H.-T.; Tan, W. Selective Photothermal Therapy for Mixed Cancer Cells Using Aptamer-Conjugated Nanorods Langmuir 2008, 24, 11860-11865 10.1021/la801969c
-
(2008)
Langmuir
, vol.24
, pp. 11860-11865
-
-
Huang, Y.-F.1
Sefah, K.2
Bamrungsap, S.3
Chang, H.-T.4
Tan, W.5
-
51
-
-
58349087531
-
Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects
-
Tong, L.; Wei, Q.; Wei, A.; Cheng, J.-X. Gold Nanorods as Contrast Agents for Biological Imaging: Optical Properties, Surface Conjugation and Photothermal Effects Photochem. Photobiol. 2009, 85, 21-32 10.1111/j.1751-1097.2008.00507.x
-
(2009)
Photochem. Photobiol.
, vol.85
, pp. 21-32
-
-
Tong, L.1
Wei, Q.2
Wei, A.3
Cheng, J.-X.4
-
52
-
-
43449093428
-
Seven Challenges for Nanomedicine
-
Sanhai, W. R.; Sakamoto, J. H.; Canady, R.; Ferrari, M. Seven Challenges for Nanomedicine Nat. Nanotechnol. 2008, 3, 242-244 10.1038/nnano.2008.114
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 242-244
-
-
Sanhai, W.R.1
Sakamoto, J.H.2
Canady, R.3
Ferrari, M.4
-
53
-
-
4644284841
-
Radiofrequency Ablation of Cancer
-
Friedman, M.; Mikityansky, I.; Kam, A.; Libutti, S. K.; Walther, M. M.; Neeman, Z.; Locklin, J. K.; Wood, B. J. Radiofrequency Ablation of Cancer Cardiovasc. Intervent. Radiol. 2004, 27, 427-434 10.1007/s00270-004-0062-0
-
(2004)
Cardiovasc. Intervent. Radiol.
, vol.27
, pp. 427-434
-
-
Friedman, M.1
Mikityansky, I.2
Kam, A.3
Libutti, S.K.4
Walther, M.M.5
Neeman, Z.6
Locklin, J.K.7
Wood, B.J.8
-
54
-
-
80054113107
-
Non-Invasive Radiofrequency Ablation of Malignancies Mediated by Quantum Dots, Gold Nanoparticles and Carbon Nanotubes
-
Glazer, E. S.; Curley, S. A. Non-Invasive Radiofrequency Ablation of Malignancies Mediated by Quantum Dots, Gold Nanoparticles and Carbon Nanotubes Ther. Delivery 2011, 2, 1325-1330 10.4155/tde.11.102
-
(2011)
Ther. Delivery
, vol.2
, pp. 1325-1330
-
-
Glazer, E.S.1
Curley, S.A.2
-
55
-
-
65549110797
-
Size-Dependent Joule Heating of Gold Nanoparticles Using Capacitively Coupled Radiofrequency Fields
-
Moran, C. H.; Wainerdi, S. M.; Cherukuri, T. K.; Kittrell, C.; Wiley, B. J.; Nicholas, N. W.; Curley, S. A.; Kanzius, J. S.; Cherukuri, P. Size-Dependent Joule Heating of Gold Nanoparticles Using Capacitively Coupled Radiofrequency Fields Nano Res. 2009, 2, 400-405 10.1007/s12274-009-9048-1
-
(2009)
Nano Res.
, vol.2
, pp. 400-405
-
-
Moran, C.H.1
Wainerdi, S.M.2
Cherukuri, T.K.3
Kittrell, C.4
Wiley, B.J.5
Nicholas, N.W.6
Curley, S.A.7
Kanzius, J.S.8
Cherukuri, P.9
-
56
-
-
79959564591
-
A Radio-Frequency Coupling Network for Heating of Citrate-Coated Gold Nanoparticles for Cancer Therapy: Design and Analysis
-
Kruse, D. E.; Stephens, D. N.; Lindfors, H. A.; Ingham, E. S.; Paoli, E. E.; Ferrara, K. W. A Radio-Frequency Coupling Network for Heating of Citrate-Coated Gold Nanoparticles for Cancer Therapy: Design and Analysis IEEE Trans. Biomed. Eng. 2011, 58, 2002-2012 10.1109/TBME.2011.2124460
-
(2011)
IEEE Trans. Biomed. Eng.
, vol.58
, pp. 2002-2012
-
-
Kruse, D.E.1
Stephens, D.N.2
Lindfors, H.A.3
Ingham, E.S.4
Paoli, E.E.5
Ferrara, K.W.6
-
58
-
-
84875666826
-
Superatom Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields
-
McCoy, R. S.; Choi, S.; Collins, G.; Ackerson, B. J.; Ackerson, C. J. Superatom Paramagnetism Enables Gold Nanocluster Heating in Applied Radiofrequency Fields ACS Nano 2013, 7, 2610-2616 10.1021/nn306015c
-
(2013)
ACS Nano
, vol.7
, pp. 2610-2616
-
-
McCoy, R.S.1
Choi, S.2
Collins, G.3
Ackerson, B.J.4
Ackerson, C.J.5
-
59
-
-
84904300367
-
Radiofrequency Heating Pathways for Gold Nanoparticles
-
Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.; Ackerson, C. J. Radiofrequency Heating Pathways for Gold Nanoparticles Nanoscale 2014, 6, 8459-8472 10.1039/C4NR00464G
-
(2014)
Nanoscale
, vol.6
, pp. 8459-8472
-
-
Collins, C.B.1
McCoy, R.S.2
Ackerson, B.J.3
Collins, G.J.4
Ackerson, C.J.5
-
60
-
-
47549117709
-
Non-Invasive Radiofrequency Ablation of Cancer Targeted by Gold Nanoparticles
-
Cardinal, J.; Klune, J. R.; Chory, E.; Jeyabalan, G.; Kanzius, J. S.; Nalesnik, M.; Geller, D. A. Non-Invasive Radiofrequency Ablation of Cancer Targeted by Gold Nanoparticles Surgery 2008, 144, 125-132 10.1016/j.surg.2008.03.036
-
(2008)
Surgery
, vol.144
, pp. 125-132
-
-
Cardinal, J.1
Klune, J.R.2
Chory, E.3
Jeyabalan, G.4
Kanzius, J.S.5
Nalesnik, M.6
Geller, D.A.7
-
61
-
-
77954285128
-
Radiofrequency Field-Induced Thermal Cytotoxicity in Cancer Cells Treated with Fluorescent Nanoparticles
-
Glazer, E. S.; Curley, S. A. Radiofrequency Field-Induced Thermal Cytotoxicity in Cancer Cells Treated With Fluorescent Nanoparticles Cancer 2010, 116, 3285-3293 10.1002/cncr.25135
-
(2010)
Cancer
, vol.116
, pp. 3285-3293
-
-
Glazer, E.S.1
Curley, S.A.2
-
62
-
-
84866488426
-
Stability of Antibody-Conjugated Gold Nanoparticles in the Endolysosomal Nanoenvironment: Implications for Non-Invasive Radiofrequency-Based Cancer Therapy
-
Raoof, M.; Corr, S. J.; Kaluarachchi, W. C.; Massey, K. L.; Briggs, K.; Zhu, C.; Cheney, M. A.; Wilson, L. J.; Curley, S. A. Stability of Antibody-Conjugated Gold Nanoparticles in the Endolysosomal Nanoenvironment: Implications for Non-Invasive Radiofrequency-Based Cancer Therapy Nanomedicine 2012, 8, 1096-1105 10.1016/j.nano.2012.02.001
-
(2012)
Nanomedicine
, vol.8
, pp. 1096-1105
-
-
Raoof, M.1
Corr, S.J.2
Kaluarachchi, W.C.3
Massey, K.L.4
Briggs, K.5
Zhu, C.6
Cheney, M.A.7
Wilson, L.J.8
Curley, S.A.9
-
63
-
-
78650322382
-
Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles
-
Glazer, E. S.; Zhu, C.; Massey, K. L.; Thompson, C. S.; Kaluarachchi, W. D.; Hamir, A. N.; Curley, S. A. Noninvasive Radiofrequency Field Destruction of Pancreatic Adenocarcinoma Xenografts Treated with Targeted Gold Nanoparticles Clin. Cancer Res. 2010, 16, 5712-5721 10.1158/1078-0432.CCR-10-2055
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 5712-5721
-
-
Glazer, E.S.1
Zhu, C.2
Massey, K.L.3
Thompson, C.S.4
Kaluarachchi, W.D.5
Hamir, A.N.6
Curley, S.A.7
-
64
-
-
84905247304
-
Gold Nanoparticles and Radiofrequency in Experimental Models for hepatocellular Carcinoma
-
Raoof, M.; Corr, S. J.; Zhu, C.; Cisneros, B. T.; Kaluarachchi, W. D.; Phounsavath, S.; Wilson, L. J.; Curley, S. A. Gold Nanoparticles and Radiofrequency in Experimental Models for hepatocellular Carcinoma Nanomedicine 2014, 10, 1121-1130 10.1016/j.nano.2014.03.004
-
(2014)
Nanomedicine
, vol.10
, pp. 1121-1130
-
-
Raoof, M.1
Corr, S.J.2
Zhu, C.3
Cisneros, B.T.4
Kaluarachchi, W.D.5
Phounsavath, S.6
Wilson, L.J.7
Curley, S.A.8
-
65
-
-
84960932687
-
-
US Patent Publication Nos. US20050251233 A1, US20050251234 A1, and US20060190063 A1
-
Kanzius, J. S. US Patent Publication Nos. US20050251233 A1, US20050251234 A1, and US20060190063 A1.
-
-
-
Kanzius, J.S.1
-
66
-
-
84960863553
-
-
Houston-Based AkesoGenX Corp. (accessed January 28 2016
-
Houston-Based AkesoGenX Corp. http://bionews-tx.com/news/2014/01/20/houston-based-akesogenx-corp-acquires-rights-to-kanzius-cancer-treatment-technology-will-move-to-commercialize-noninvasive-radio-wave-cancer-treatment/ (accessed January 28, 2016).
-
-
-
-
67
-
-
84960911308
-
-
Kanzius Cancer Research Foundation. accessed January 28 2016
-
Kanzius Cancer Research Foundation. http://www.kanziuscancerresearch.org (accessed January 28, 2016).
-
-
-
-
68
-
-
84960886028
-
-
NeoTherma Oncology. (accessed January 28 2016)
-
NeoTherma Oncology. http://www.neothermaoncology.com/ (accessed January 28, 2016).
-
-
-
-
69
-
-
85026981660
-
-
Gets its First Human Trial accessed January 28 2016
-
Kanzius Cancer Machine Gets its First Human Trial http://www.newsweek.com/2015/07/31/kanzius-cancer-machine-gets-its-first-human-trial-355758.html (accessed January 28, 2016).
-
Kanzius Cancer Machine
-
-
-
70
-
-
79953325886
-
Negligible Absorption of Radiofrequency Radiation by Colloidal Gold Nanoparticles
-
Li, D.; Jung, Y. S.; Tan, S.; Kim, H. K.; Chory, E.; Geller, D. A. Negligible Absorption of Radiofrequency Radiation by Colloidal Gold Nanoparticles J. Colloid Interface Sci. 2011, 358, 47-53 10.1016/j.jcis.2011.01.059
-
(2011)
J. Colloid Interface Sci.
, vol.358
, pp. 47-53
-
-
Li, D.1
Jung, Y.S.2
Tan, S.3
Kim, H.K.4
Chory, E.5
Geller, D.A.6
-
71
-
-
84857278955
-
Radio Frequency Absorption in Gold Nanoparticle Suspensions: A Phenomenological Study
-
Sassaroli, E.; Li, K. C. P.; O'Neill, B. E. Radio Frequency Absorption in Gold Nanoparticle Suspensions: A Phenomenological Study J. Phys. D: Appl. Phys. 2012, 45, 075303 10.1088/0022-3727/45/7/075303
-
(2012)
J. Phys. D: Appl. Phys.
, vol.45
, pp. 075303
-
-
Sassaroli, E.1
Li, K.C.P.2
O'Neill, B.E.3
-
72
-
-
84862539453
-
Low Frequency Heating of Gold Nanoparticle Dispersions for Non-Invasive Thermal Therapies
-
Liu, X.; Chen, H.-J.; Chen, X.; Parini, C.; Wen, D. Low Frequency Heating of Gold Nanoparticle Dispersions for Non-Invasive Thermal Therapies Nanoscale 2012, 4, 3945-3953 10.1039/c2nr30166k
-
(2012)
Nanoscale
, vol.4
, pp. 3945-3953
-
-
Liu, X.1
Chen, H.-J.2
Chen, X.3
Parini, C.4
Wen, D.5
-
73
-
-
84869390789
-
Citrate-Capped Gold Nanoparticle Electrophoretic Heat Production in Response to a Time-Varying Radio-Frequency Electric Field
-
Corr, S. J.; Raoof, M.; Mackeyev, Y.; Phounsavath, S.; Cheney, M. A.; Cisneros, B. T.; Shur, M.; Gozin, M.; McNally, P. J.; Wilson, L. J.; Curley, S. A. Citrate-Capped Gold Nanoparticle Electrophoretic Heat Production in Response to a Time-Varying Radio-Frequency Electric Field J. Phys. Chem. C 2012, 116, 24380-24389 10.1021/jp309053z
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 24380-24389
-
-
Corr, S.J.1
Raoof, M.2
MacKeyev, Y.3
Phounsavath, S.4
Cheney, M.A.5
Cisneros, B.T.6
Shur, M.7
Gozin, M.8
McNally, P.J.9
Wilson, L.J.10
Curley, S.A.11
-
74
-
-
84921457047
-
Gold Nanoparticles Stabilized with MPEG-Grafted Poly(L-lysine): In Vitro and in Vivo Evaluation of a Potential Theranostic Agent
-
Bogdanov, A. A.; Gupta, S.; Koshkina, N.; Corr, S. J.; Zhang, S.; Curley, S. A.; Han, G. Gold Nanoparticles Stabilized with MPEG-Grafted Poly(L-lysine): In Vitro and in Vivo Evaluation of a Potential Theranostic Agent Bioconjugate Chem. 2015, 26, 39-50 10.1021/bc5005087
-
(2015)
Bioconjugate Chem.
, vol.26
, pp. 39-50
-
-
Bogdanov, A.A.1
Gupta, S.2
Koshkina, N.3
Corr, S.J.4
Zhang, S.5
Curley, S.A.6
Han, G.7
-
75
-
-
84859967982
-
Luciferase-Based Protein Denaturation Assay for Quantification of Radiofrequency Field-Induced Targeted Hyperthermia: Developing an Intracellular Thermometer
-
Raoof, M.; Zhu, C.; Kaluarachchi, W. D.; Curley, S. A. Luciferase-Based Protein Denaturation Assay for Quantification of Radiofrequency Field-Induced Targeted Hyperthermia: Developing an Intracellular Thermometer Int. J. Hyperthermia 2012, 28, 202-209 10.3109/02656736.2012.666318
-
(2012)
Int. J. Hyperthermia
, vol.28
, pp. 202-209
-
-
Raoof, M.1
Zhu, C.2
Kaluarachchi, W.D.3
Curley, S.A.4
-
76
-
-
58649104170
-
Noninvasive Radiofrequency Field-Induced Hyperthermia Cytotoxicity in Human Cancer Cells Using Cetuximab-Targeted Gold Nanoparticles
-
Curley, S. A.; Cherukuri, P.; Briggs, K.; Patra, C. R.; Upton, M.; Dolson, E.; Mukherjee, P. Noninvasive Radiofrequency Field-Induced Hyperthermia Cytotoxicity in Human Cancer Cells Using Cetuximab-Targeted Gold Nanoparticles J. Exp. Ther. Oncol. 2008, 7, 313-326
-
(2008)
J. Exp. Ther. Oncol.
, vol.7
, pp. 313-326
-
-
Curley, S.A.1
Cherukuri, P.2
Briggs, K.3
Patra, C.R.4
Upton, M.5
Dolson, E.6
Mukherjee, P.7
-
77
-
-
41549083324
-
Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells
-
Gannon, C. J.; Patra, C. R.; Bhattacharya, R.; Mukherjee, P.; Curley, S. A. Intracellular Gold Nanoparticles Enhance Non-Invasive Radiofrequency Thermal Destruction of Human Gastrointestinal Cancer Cells J. Nanobiotechnol. 2008, 6, 2-9 10.1186/1477-3155-6-2
-
(2008)
J. Nanobiotechnol.
, vol.6
, pp. 2-9
-
-
Gannon, C.J.1
Patra, C.R.2
Bhattacharya, R.3
Mukherjee, P.4
Curley, S.A.5
-
78
-
-
77952913464
-
Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods
-
Huang, H.-C.; Rege, K.; Heys, J. J. Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods ACS Nano 2010, 4, 2892-2900 10.1021/nn901884d
-
(2010)
ACS Nano
, vol.4
, pp. 2892-2900
-
-
Huang, H.-C.1
Rege, K.2
Heys, J.J.3
-
79
-
-
78651325917
-
Effect of Gold Nanorod Concentration on the Depth-Related Temperature Increase during Hyperthermic Ablation
-
Jang, B.; Kim, Y. S.; Choi, Y. Effect of Gold Nanorod Concentration on the Depth-Related Temperature Increase During Hyperthermic Ablation Small 2011, 7, 265-270 10.1002/smll.201001532
-
(2011)
Small
, vol.7
, pp. 265-270
-
-
Jang, B.1
Kim, Y.S.2
Choi, Y.3
-
80
-
-
78349279249
-
Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals
-
Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Understanding the Photothermal Conversion Efficiency of Gold Nanocrystals Small 2010, 6, 2272-2280 10.1002/smll.201001109
-
(2010)
Small
, vol.6
, pp. 2272-2280
-
-
Chen, H.1
Shao, L.2
Ming, T.3
Sun, Z.4
Zhao, C.5
Yang, B.6
Wang, J.7
-
81
-
-
65249154432
-
Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions
-
Richardson, H. H.; Carlson, M. T.; Tandler, P. J.; Hernandez, P.; Govorov, A. O. Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions Nano Lett. 2009, 9, 1139-1146 10.1021/nl8036905
-
(2009)
Nano Lett.
, vol.9
, pp. 1139-1146
-
-
Richardson, H.H.1
Carlson, M.T.2
Tandler, P.J.3
Hernandez, P.4
Govorov, A.O.5
-
82
-
-
84891376186
-
Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles
-
Jiang, K.; Smith, D. A.; Pinchuk, A. Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles J. Phys. Chem. C 2013, 117, 27073-27080 10.1021/jp409067h
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 27073-27080
-
-
Jiang, K.1
Smith, D.A.2
Pinchuk, A.3
-
83
-
-
84893873209
-
The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and in Vitro Experiments
-
Mackey, M. A.; Ali, M. R. K.; Austin, L. A.; Near, R. D.; El-Sayed, M. A. The Most Effective Gold Nanorod Size for Plasmonic Photothermal Therapy: Theory and In Vitro Experiments J. Phys. Chem. B 2014, 118, 1319-1326 10.1021/jp409298f
-
(2014)
J. Phys. Chem. B
, vol.118
, pp. 1319-1326
-
-
MacKey, M.A.1
Ali, M.R.K.2
Austin, L.A.3
Near, R.D.4
El-Sayed, M.A.5
-
84
-
-
84902294669
-
Triphase Interface Synthesis of Plasmonic Gold Bellflowers as Near-Infrared Light Mediated Acoustic Thermal Theranostics
-
Huang, P.; Rong, P.; Lin, J.; Li, W.; Yan, x.; Zhang, M. G.; Nie, L.; Niu, G.; Lu, J.; Chen, X. et al. Triphase Interface Synthesis of Plasmonic Gold Bellflowers as Near-Infrared Light Mediated Acoustic Thermal Theranostics J. Am. Chem. Soc. 2014, 136, 8307-8313 10.1021/ja503115n
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 8307-8313
-
-
Huang, P.1
Rong, P.2
Lin, J.3
Li, W.4
Yan, X.5
Zhang, M.G.6
Nie, L.7
Niu, G.8
Lu, J.9
Chen, X.10
-
85
-
-
84875826798
-
A Plasmon-Assisted Optofluidic (PAOF) System for Measuring the Photothermal Conversion Efficiencies of Gold Nanostructures and Controlling an Electrical Switch
-
Zeng, J.; Goldfeld, D.; Xia, Y. A Plasmon-Assisted Optofluidic (PAOF) System for Measuring the Photothermal Conversion Efficiencies of Gold Nanostructures and Controlling an Electrical Switch Angew. Chem., Int. Ed. 2013, 52, 4169-4173 10.1002/anie.201210359
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 4169-4173
-
-
Zeng, J.1
Goldfeld, D.2
Xia, Y.3
-
86
-
-
84890664460
-
Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy
-
Huang, P.; Lin, J.; Li, W.; Rong, P.; Wang, Z.; Wang, S.; Wang, X.; Sun, X.; Aronova, M.; Niu, G.; Leapman, R. D.; Nie, Z.; Chen, X. Biodegradable Gold Nanovesicles with an Ultrastrong Plasmonic Coupling Effect for Photoacoustic Imaging and Photothermal Therapy Angew. Chem., Int. Ed. 2013, 52, 13958-13964 10.1002/anie.201308986
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 13958-13964
-
-
Huang, P.1
Lin, J.2
Li, W.3
Rong, P.4
Wang, Z.5
Wang, S.6
Wang, X.7
Sun, X.8
Aronova, M.9
Niu, G.10
Leapman, R.D.11
Nie, Z.12
Chen, X.13
-
87
-
-
84901049651
-
Characterization of Nanoporous Gold Disks for Photothermal Light Harvesting and Light-Gated Molecular Release
-
Santos, G. M.; Zhao, F.; Zeng, J.; Shih, W.-C. Characterization of Nanoporous Gold Disks for Photothermal Light Harvesting and Light-Gated Molecular Release Nanoscale 2014, 6, 5718-5724 10.1039/c4nr01266f
-
(2014)
Nanoscale
, vol.6
, pp. 5718-5724
-
-
Santos, G.M.1
Zhao, F.2
Zeng, J.3
Shih, W.-C.4
-
88
-
-
68149110398
-
Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications
-
Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. Photothermal Efficiencies of Nanoshells and Nanorods for Clinical Therapeutic Applications J. Phys. Chem. C 2009, 113, 12090-12094 10.1021/jp9003592
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 12090-12094
-
-
Cole, J.R.1
Mirin, N.A.2
Knight, M.W.3
Goodrich, G.P.4
Halas, N.J.5
-
89
-
-
84866388468
-
Nanoparticle-Mediated Photothermal Therapy: A Comparative Study of Heating for Different Particle Types
-
Pattani, V. P.; Tunnell, J. W. Nanoparticle-Mediated Photothermal Therapy: A Comparative Study of Heating for Different Particle Types Lasers Surg. Med. 2012, 44, 675-684 10.1002/lsm.22072
-
(2012)
Lasers Surg. Med.
, vol.44
, pp. 675-684
-
-
Pattani, V.P.1
Tunnell, J.W.2
-
90
-
-
84903437657
-
Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Tratment: Benchmarking Against Nanoshells
-
Ayala-Orozco, C.; Urban, C.; Knight, M. W.; Urban, A. S.; Neumann, O.; Bishnoi, S. W.; Mukherjee, S.; Goodman, A. M.; Charron, H.; Mitchell, T.; Shea, M.; Roy, R.; Nanda, S.; Schiff, R.; Halas, N. J.; Josh, A. et al. Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Tratment: Benchmarking Against Nanoshells ACS Nano 2014, 8, 6372-6381 10.1021/nn501871d
-
(2014)
ACS Nano
, vol.8
, pp. 6372-6381
-
-
Ayala-Orozco, C.1
Urban, C.2
Knight, M.W.3
Urban, A.S.4
Neumann, O.5
Bishnoi, S.W.6
Mukherjee, S.7
Goodman, A.M.8
Charron, H.9
Mitchell, T.10
Shea, M.11
Roy, R.12
Nanda, S.13
Schiff, R.14
Halas, N.J.15
Josh, A.16
-
91
-
-
84872837217
-
Ultrafast Thermal Analysis of Surface Functionalized Gold Nanorods in Aqueous Solution
-
Huang, J.; Park, J.; Wang, W.; Murphy, C. J.; Cahill, D. G. Ultrafast Thermal Analysis of Surface Functionalized Gold Nanorods in Aqueous Solution ACS Nano 2013, 7, 589-597 10.1021/nn304738u
-
(2013)
ACS Nano
, vol.7
, pp. 589-597
-
-
Huang, J.1
Park, J.2
Wang, W.3
Murphy, C.J.4
Cahill, D.G.5
-
92
-
-
0345867326
-
Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence
-
Link, S.; Burda, C.; Mohamed, M. B.; Nikoobakht, B.; El-Sayed, M. A. Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence J. Phys. Chem. A 1999, 103, 1165-1170 10.1021/jp983141k
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 1165-1170
-
-
Link, S.1
Burda, C.2
Mohamed, M.B.3
Nikoobakht, B.4
El-Sayed, M.A.5
-
93
-
-
79955913925
-
Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics
-
Ungureanu, C.; Kroes, R.; Petersen, W.; Groothuis, T. A. M.; Ungureanu, F.; Janssen, H.; van Leeuwen, F. W. B.; Kooyman, R. P. H.; Manohar, S.; van Leeuwen, T. G. Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics Nano Lett. 2011, 11, 1887-1894 10.1021/nl103884b
-
(2011)
Nano Lett.
, vol.11
, pp. 1887-1894
-
-
Ungureanu, C.1
Kroes, R.2
Petersen, W.3
Groothuis, T.A.M.4
Ungureanu, F.5
Janssen, H.6
Van Leeuwen, F.W.B.7
Kooyman, R.P.H.8
Manohar, S.9
Van Leeuwen, T.G.10
-
94
-
-
0036295978
-
The Cellular and Molecular Basis of Hyperthermia
-
Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The Cellular and Molecular Basis of Hyperthermia Critical Rev. Oncol. Hemat. 2002, 43, 33-56 10.1016/S1040-8428(01)00179-2
-
(2002)
Critical Rev. Oncol. Hemat.
, vol.43
, pp. 33-56
-
-
Hildebrandt, B.1
Wust, P.2
Ahlers, O.3
Dieing, A.4
Sreenivasa, G.5
Kerner, T.6
Felix, R.7
Riess, H.8
-
95
-
-
84905159215
-
Nanoparticles for Photothermal Therapies
-
Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro-Gonzaléz, P.; Benayas, A.; Plaza, J. L.; Rodriguez, E. M.; Solé, J. G. Nanoparticles for Photothermal Therapies Nanoscale 2014, 6, 9494-9530 10.1039/C4NR00708E
-
(2014)
Nanoscale
, vol.6
, pp. 9494-9530
-
-
Jaque, D.1
Maestro, L.M.2
Del Rosal, B.3
Haro-Gonzaléz, P.4
Benayas, A.5
Plaza, J.L.6
Rodriguez, E.M.7
Solé, J.G.8
-
96
-
-
84921811522
-
Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy
-
Melamed, J. R.; Edelstein, R. S.; Day, E. S. Elucidating the Fundamental Mechanisms of Cell Death Triggered by Photothermal Therapy ACS Nano 2015, 9, 6-11 10.1021/acsnano.5b00021
-
(2015)
ACS Nano
, vol.9
, pp. 6-11
-
-
Melamed, J.R.1
Edelstein, R.S.2
Day, E.S.3
-
97
-
-
7744235672
-
Death by Design: Apoptosis, Necrosis and Autophagy
-
Edinger, A. L.; Thompson, C. B. Death by Design: Apoptosis, Necrosis and Autophagy Curr. Opin. Cell Biol. 2004, 16, 663-669 10.1016/j.ceb.2004.09.011
-
(2004)
Curr. Opin. Cell Biol.
, vol.16
, pp. 663-669
-
-
Edinger, A.L.1
Thompson, C.B.2
-
98
-
-
35748941965
-
Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity
-
Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J.-X. Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity Adv. Mater. 2007, 19, 3136-3141 10.1002/adma.200701974
-
(2007)
Adv. Mater.
, vol.19
, pp. 3136-3141
-
-
Tong, L.1
Zhao, Y.2
Huff, T.B.3
Hansen, M.N.4
Wei, A.5
Cheng, J.-X.6
-
99
-
-
0035072953
-
Membrane Blebbing during Apoptosis Results from Caspase-Mediated Activation of ROCK I
-
Coleman, M. L.; Sahai, E. A.; Yeo, M.; Bosch, M.; Dewar, A.; Olson, M. F. Membrane Blebbing During Apoptosis Results from Caspase-Mediated Activation of ROCK I Nat. Cell Biol. 2001, 3, 339-345 10.1038/35070009
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 339-345
-
-
Coleman, M.L.1
Sahai, E.A.2
Yeo, M.3
Bosch, M.4
Dewar, A.5
Olson, M.F.6
-
100
-
-
79952526950
-
Comparative, Study of Photothermolysis of Cancer Cells with Nuclear-Targeted or Cytoplasm-Targeted Gold Nanospheres: Continuous Wave or Pulsed Lasers
-
Huang, X.; Kang, B.; Qian, W.; Mackey, M. A.; Chen, P. C.; Oyelere, A.; El-Sayed, I. H.; El-Sayed, M. A. Comparative, Study of Photothermolysis of Cancer Cells with Nuclear-Targeted or Cytoplasm-Targeted Gold Nanospheres: Continuous Wave or Pulsed Lasers J. Biomed. Opt. 2010, 15, 058002 10.1117/1.3486538
-
(2010)
J. Biomed. Opt.
, vol.15
, pp. 058002
-
-
Huang, X.1
Kang, B.2
Qian, W.3
MacKey, M.A.4
Chen, P.C.5
Oyelere, A.6
El-Sayed, I.H.7
El-Sayed, M.A.8
-
101
-
-
78149412994
-
Surface Plasmonic Gold Nanorods for Enhanced Two-Photon Microscopic Imaging and Apoptosis Induction of Cancer Cells
-
Li, J.-L.; Gu, M. Surface Plasmonic Gold Nanorods for Enhanced Two-Photon Microscopic Imaging and Apoptosis Induction of Cancer Cells Biomaterials 2010, 31, 9492-9498 10.1016/j.biomaterials.2010.08.068
-
(2010)
Biomaterials
, vol.31
, pp. 9492-9498
-
-
Li, J.-L.1
Gu, M.2
-
102
-
-
77649271612
-
In situ Real-Time Investigation of Cancer Cell Photothermolysis Mediated by Excited Gold Nanorod Surface Plasmons
-
Chen, C.-L.; Kuo, L.-R.; Chang, C.-L.; Hwu, Y.-K.; Huang, C.-K.; Lee, S.-Y.; Chen, K.; Lin, S.-J.; Huang, J.-D.; Chen, Y.-Y. In situ Real-Time Investigation of Cancer Cell Photothermolysis Mediated by Excited Gold Nanorod Surface Plasmons Biomaterials 2010, 31, 4104-4112 10.1016/j.biomaterials.2010.01.140
-
(2010)
Biomaterials
, vol.31
, pp. 4104-4112
-
-
Chen, C.-L.1
Kuo, L.-R.2
Chang, C.-L.3
Hwu, Y.-K.4
Huang, C.-K.5
Lee, S.-Y.6
Chen, K.7
Lin, S.-J.8
Huang, J.-D.9
Chen, Y.-Y.10
-
103
-
-
84921745355
-
Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms
-
Pérez-Hernández, M.; del Pino, P.; Mitchell, S. G.; Moros, M.; Stepien, G.; Pelaz, B.; Parak, W. J.; Gálvez, E. M.; Pardo, J.; de la Fuente, J. M. Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms ACS Nano 2015, 9, 52-61 10.1021/nn505468v
-
(2015)
ACS Nano
, vol.9
, pp. 52-61
-
-
Pérez-Hernández, M.1
Del Pino, P.2
Mitchell, S.G.3
Moros, M.4
Stepien, G.5
Pelaz, B.6
Parak, W.J.7
Gálvez, E.M.8
Pardo, J.9
De La Fuente, J.M.10
-
104
-
-
84921415387
-
Role of Apoptosis and Necrosis in Cell Death Induced by Nanoparticle-Mediated Photothermal Therapy
-
Pattani, V. P.; Shah, J.; Atalis, A.; Sharma, A.; Tunnell, J. W. Role of Apoptosis and Necrosis in Cell Death Induced by Nanoparticle-Mediated Photothermal Therapy J. Nanopart. Res. 2015, 17, 20 10.1007/s11051-014-2822-3
-
(2015)
J. Nanopart. Res.
, vol.17
, pp. 20
-
-
Pattani, V.P.1
Shah, J.2
Atalis, A.3
Sharma, A.4
Tunnell, J.W.5
-
105
-
-
79959787849
-
Specific Cell Targeting with Nanobody Conjugated Branched Gold Nanoparticles for Photothermal Therapy
-
Van de Broek, B.; Devoogdt, N.; D'Hollander, A.; Gijs, H.-L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific Cell Targeting with Nanobody Conjugated Branched Gold Nanoparticles for Photothermal Therapy ACS Nano 2011, 5, 4319-4328 10.1021/nn1023363
-
(2011)
ACS Nano
, vol.5
, pp. 4319-4328
-
-
Van De Broek, B.1
Devoogdt, N.2
D'Hollander, A.3
Gijs, H.-L.4
Jans, K.5
Lagae, L.6
Muyldermans, S.7
Maes, G.8
Borghs, G.9
-
106
-
-
84863912661
-
TAT Peptide-Functionalized Gold Nanostars: Enhanced Intracellular Delivery and Efficiently NIR Photothermal Therapy Using Ultralow Irradiance
-
Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT Peptide-Functionalized Gold Nanostars: Enhanced Intracellular Delivery and Efficiently NIR Photothermal Therapy Using Ultralow Irradiance J. Am. Chem. Soc. 2012, 134, 11358-11361 10.1021/ja304180y
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 11358-11361
-
-
Yuan, H.1
Fales, A.M.2
Vo-Dinh, T.3
-
107
-
-
84897078830
-
Enhancing the Efficiency of Gold Nanoparticles Treatment of Cancer by Increasing Their Rate of Endocytosis and Cell Accumulation Using Rifampicin
-
Ali, M. R. K.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the Efficiency of Gold Nanoparticles Treatment of Cancer by Increasing Their Rate of Endocytosis and Cell Accumulation Using Rifampicin J. Am. Chem. Soc. 2014, 136, 4464-4467 10.1021/ja4124412
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 4464-4467
-
-
Ali, M.R.K.1
Panikkanvalappil, S.R.2
El-Sayed, M.A.3
-
108
-
-
79956085473
-
4/silica (Core/Shell/Shell) Upconversion Nanoparticles for Photothermal Destruction of Be(2)-C Neuroblastoma Cells
-
4/silica (Core/Shell/Shell) Upconversion Nanoparticles for Photothermal Destruction of Be(2)-C Neuroblastoma Cells J. Nanopart. Res. 2011, 13, 499-510 10.1007/s11051-010-0080-6
-
(2011)
J. Nanopart. Res.
, vol.13
, pp. 499-510
-
-
Qian, L.P.1
Zhou, L.H.2
Too, H.-P.3
Chow, G.-M.4
-
109
-
-
84866361084
-
Aptamer-Guided Silver-Gold Bimetallic Nanostructures with Highly Active Surface-Enhanced Raman Scattering for Specific Detection and Near-Infrared Photothermal Therapy of Human Breast Cancer Cells
-
Wu, P.; Gao, Y.; Zhang, H.; Cai, C. Aptamer-Guided Silver-Gold Bimetallic Nanostructures with Highly Active Surface-Enhanced Raman Scattering for Specific Detection and Near-Infrared Photothermal Therapy of Human Breast Cancer Cells Anal. Chem. 2012, 84, 7692-7699 10.1021/ac3015164
-
(2012)
Anal. Chem.
, vol.84
, pp. 7692-7699
-
-
Wu, P.1
Gao, Y.2
Zhang, H.3
Cai, C.4
-
110
-
-
79952638580
-
Gold-Nanoshelled Microcapsules: A Theranostic Agent for Ultrasound Contrast Imaging and Photothermal Therapy
-
Ke, H.; Wang, J.; Dai, Z.; Jin, Y.; Qu, E.; Xing, Z.; Guo, C.; Yue, X.; Liu, J. Gold-Nanoshelled Microcapsules: A Theranostic Agent for Ultrasound Contrast Imaging and Photothermal Therapy Angew. Chem. 2011, 123, 3073-3077 10.1002/ange.201008286
-
(2011)
Angew. Chem.
, vol.123
, pp. 3073-3077
-
-
Ke, H.1
Wang, J.2
Dai, Z.3
Jin, Y.4
Qu, E.5
Xing, Z.6
Guo, C.7
Yue, X.8
Liu, J.9
-
111
-
-
84862179681
-
A Gold Nanocage-CNT Hybrid for Targeted Imaging and Photothermal Destruction of Cancer Cells
-
Khan, S. A.; Kanchanapally, R.; Fan, Z.; Beqa, L.; Singh, A. K.; Senapati, D.; Ray, P. C. A Gold Nanocage-CNT Hybrid for Targeted Imaging and Photothermal Destruction of Cancer Cells Chem. Commun. 2012, 48, 6711-6713 10.1039/c2cc32313c
-
(2012)
Chem. Commun.
, vol.48
, pp. 6711-6713
-
-
Khan, S.A.1
Kanchanapally, R.2
Fan, Z.3
Beqa, L.4
Singh, A.K.5
Senapati, D.6
Ray, P.C.7
-
112
-
-
61849153021
-
Impact of Nanotechnology on Drug Delivery
-
Farokhzad, O. C.; Langer, R. Impact of Nanotechnology on Drug Delivery ACS Nano 2009, 3, 16-20 10.1021/nn900002m
-
(2009)
ACS Nano
, vol.3
, pp. 16-20
-
-
Farokhzad, O.C.1
Langer, R.2
-
113
-
-
84861809558
-
Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles
-
Yang, X.; Liu, X.; Liu, Z.; Pu, F.; Ren, J.; Qu, X. Near-Infrared Light-Triggered, Targeted Drug Delivery to Cancer Cells by Aptamer Gated Nanovehicles Adv. Mater. 2012, 24, 2890-2895 10.1002/adma.201104797
-
(2012)
Adv. Mater.
, vol.24
, pp. 2890-2895
-
-
Yang, X.1
Liu, X.2
Liu, Z.3
Pu, F.4
Ren, J.5
Qu, X.6
-
114
-
-
84863673518
-
PH-Responsive NIR Enhanced Drug Release from Gold Nanocages Possesses High Potency Against Cancer Cells
-
Shi, P.; Qu, K.; Wang, J.; Li, M.; Ren, J.; Qu, X. pH-Responsive NIR Enhanced Drug Release From Gold Nanocages Possesses High Potency Against Cancer Cells Chem. Commun. 2012, 48, 7640-7642 10.1039/c2cc33543c
-
(2012)
Chem. Commun.
, vol.48
, pp. 7640-7642
-
-
Shi, P.1
Qu, K.2
Wang, J.3
Li, M.4
Ren, J.5
Qu, X.6
-
115
-
-
84873448690
-
Gold Nanoshell Nanomicelles for Potential Magnetic Resonance Imaging, Light-Triggered Drug Release, and Photothermal Therapy
-
Ma, Y.; Liang, X.; Tong, S.; Bao, G.; Ren, Q.; Dai, Z. Gold Nanoshell Nanomicelles for Potential Magnetic Resonance Imaging, Light-Triggered Drug Release, and Photothermal Therapy Adv. Funct. Mater. 2013, 23, 815-822 10.1002/adfm.201201663
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 815-822
-
-
Ma, Y.1
Liang, X.2
Tong, S.3
Bao, G.4
Ren, Q.5
Dai, Z.6
-
116
-
-
80051580475
-
Photodynamic Therapy of Cancer: An Update
-
Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B. C.; Golab, J. Photodynamic Therapy of Cancer: An Update Ca-Cancer J. Clin. 2011, 61, 250-281 10.3322/caac.20114
-
(2011)
Ca-Cancer J. Clin.
, vol.61
, pp. 250-281
-
-
Agostinis, P.1
Berg, K.2
Cengel, K.A.3
Foster, T.H.4
Girotti, A.W.5
Gollnick, S.O.6
Hahn, S.M.7
Hamblin, M.R.8
Juzeniene, A.9
Kessel, D.10
Korbelik, M.11
Moan, J.12
Mroz, P.13
Nowis, D.14
Piette, J.15
Wilson, B.C.16
Golab, J.17
-
117
-
-
84866715410
-
Hypocrellin-Loaded Gold Nanocages with High Two-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy in Vitro
-
Gao, L.; Fei, J.; Zhao, J.; Li, H.; Cui, Y.; Li, J. Hypocrellin-Loaded Gold Nanocages with High Two-Photon Efficiency for Photothermal/Photodynamic Cancer Therapy In Vitro ACS Nano 2012, 6, 8030-8040 10.1021/nn302634m
-
(2012)
ACS Nano
, vol.6
, pp. 8030-8040
-
-
Gao, L.1
Fei, J.2
Zhao, J.3
Li, H.4
Cui, Y.5
Li, J.6
-
118
-
-
84862840610
-
Assembly of Aptamer Switch Probes and Photosensitizer on Gold Nanorods for Targeted Photothermal an Photodynamic Cancer Therapy
-
Wang, J.; Zhu, G.; You, M.; Song, E.; Shukoor, M. I.; Zhang, K.; Altman, M. B.; Chen, Y.; Zhu, Z.; Huang, C. Z.; Tan, W. Assembly of Aptamer Switch Probes and Photosensitizer on Gold Nanorods for Targeted Photothermal an Photodynamic Cancer Therapy ACS Nano 2012, 6, 5070-5077 10.1021/nn300694v
-
(2012)
ACS Nano
, vol.6
, pp. 5070-5077
-
-
Wang, J.1
Zhu, G.2
You, M.3
Song, E.4
Shukoor, M.I.5
Zhang, K.6
Altman, M.B.7
Chen, Y.8
Zhu, Z.9
Huang, C.Z.10
Tan, W.11
-
119
-
-
84862787594
-
Gold Nanomaterials Conjugated with Indocyanine Green for Dual-Modality Photodynamic and Photothermal Therapy
-
Kuo, W.-S.; Chang, Y.-T.; Cho, K.-C.; Chiu, K.-C.; Lien, C.-H.; Yeh, C.-S.; Chen, S.-J. Gold Nanomaterials Conjugated with Indocyanine Green for Dual-Modality Photodynamic and Photothermal Therapy Biomaterials 2012, 33, 3270-3278 10.1016/j.biomaterials.2012.01.035
-
(2012)
Biomaterials
, vol.33
, pp. 3270-3278
-
-
Kuo, W.-S.1
Chang, Y.-T.2
Cho, K.-C.3
Chiu, K.-C.4
Lien, C.-H.5
Yeh, C.-S.6
Chen, S.-J.7
-
120
-
-
67650169752
-
Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture
-
Tibbitt, M. W.; Anseth, K. S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture Biotechnol. Bioeng. 2009, 103, 655-663 10.1002/bit.22361
-
(2009)
Biotechnol. Bioeng.
, vol.103
, pp. 655-663
-
-
Tibbitt, M.W.1
Anseth, K.S.2
-
121
-
-
67649871487
-
In vitro Toxicity Testing of Nanoparticles in 3D Cell Culture
-
Lee, J.; Lilly, D.; Doty, C.; Podsiadlo, P.; Kotov, N. A. In vitro Toxicity Testing of Nanoparticles in 3D Cell Culture Small 2009, 10, 1213-1221 10.1002/smll.200801788
-
(2009)
Small
, vol.10
, pp. 1213-1221
-
-
Lee, J.1
Lilly, D.2
Doty, C.3
Podsiadlo, P.4
Kotov, N.A.5
-
122
-
-
84896921255
-
Gold Nanoshelled Liquid Perfluorocarbon Nanocapsules for Combined Dual Modal Ultrasound/CT Imaging and Photothermal Therapy of Cancer
-
Ke, H.; Yu, X.; Wang, J.; Xing, S.; Zhang, Q.; Dai, Z.; Tian, J.; Wang, S.; Jin, Y. Gold Nanoshelled Liquid Perfluorocarbon Nanocapsules for Combined Dual Modal Ultrasound/CT Imaging and Photothermal Therapy of Cancer Small 2014, 10, 1220-1227 10.1002/smll.201302252
-
(2014)
Small
, vol.10
, pp. 1220-1227
-
-
Ke, H.1
Yu, X.2
Wang, J.3
Xing, S.4
Zhang, Q.5
Dai, Z.6
Tian, J.7
Wang, S.8
Jin, Y.9
-
123
-
-
84920609774
-
Controlled Synthesis of Multilayered Gold Nanoshells for Enhanced Photothermal Therapy and SERS Detection
-
Gao, Y.; Li, Y.; Wang, Y.; Chen, Y.; Gu, J.; Zhao, W.; Ding, J.; Shi, J. Controlled Synthesis of Multilayered Gold Nanoshells for Enhanced Photothermal Therapy and SERS Detection Small 2015, 11, 77-83 10.1002/smll.201402149
-
(2015)
Small
, vol.11
, pp. 77-83
-
-
Gao, Y.1
Li, Y.2
Wang, Y.3
Chen, Y.4
Gu, J.5
Zhao, W.6
Ding, J.7
Shi, J.8
-
124
-
-
84906486352
-
4/Ag Complexed Cores in Hollow Gold Nanoshells for Enhanced Theranostic Magnetic Resonance Imaging and Photothermal Therapy
-
4/Ag Complexed Cores in Hollow Gold Nanoshells for Enhanced Theranostic Magnetic Resonance Imaging and Photothermal Therapy Small 2014, 10, 3246-3251 10.1002/smll.201303593
-
(2014)
Small
, vol.10
, pp. 3246-3251
-
-
Lin, A.Y.1
Young, J.K.2
Nixon, A.V.3
Drezek, R.A.4
-
125
-
-
84906658072
-
64Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy
-
64Cu-Integrated Gold Nanomaterials for Positron Emission Tomography Imaging Guided Photothermal Cancer Therapy ACS Nano 2014, 8, 8438-8446 10.1021/nn502950t
-
(2014)
ACS Nano
, vol.8
, pp. 8438-8446
-
-
Sun, X.1
Huang, X.2
Yan, X.3
Wang, Y.4
Guo, J.5
Jacobson, O.6
Liu, D.7
Szajek, L.P.8
Zhu, W.9
Niu, G.10
Kiesewetter, D.O.11
Sun, S.12
Chen, X.13
-
126
-
-
84863011363
-
Targeting Gold Nanoshells on Silica Nanorattles: A Drug Cocktail to Fight Breast Tumors via a Single Irradiation with Near-Infrared Laser Light
-
Liu, H.; Liu, T.; Wu, X.; Li, L.; Tan, L.; Chen, D.; Tang, F. Targeting Gold Nanoshells on Silica Nanorattles: A Drug Cocktail to Fight Breast Tumors via a Single Irradiation with Near-Infrared Laser Light Adv. Mater. 2012, 24, 755-761 10.1002/adma.201103343
-
(2012)
Adv. Mater.
, vol.24
, pp. 755-761
-
-
Liu, H.1
Liu, T.2
Wu, X.3
Li, L.4
Tan, L.5
Chen, D.6
Tang, F.7
-
127
-
-
84874587298
-
Photothermal Nanodrugs: Potential of TNF-Gold Nanospheres for Cancer Theranostics
-
Shao, J.; Griffin, R. J.; Galanzha, E. I.; Kim, J.-W.; Koonce, N.; Webber, J.; Mustafa, T.; Biris, A. S.; Nedosekin, D. A.; Zharov, V. P. Photothermal Nanodrugs: Potential of TNF-Gold Nanospheres for Cancer Theranostics Sci. Rep. 2013, 3, 1293 10.1038/srep01293
-
(2013)
Sci. Rep.
, vol.3
, pp. 1293
-
-
Shao, J.1
Griffin, R.J.2
Galanzha, E.I.3
Kim, J.-W.4
Koonce, N.5
Webber, J.6
Mustafa, T.7
Biris, A.S.8
Nedosekin, D.A.9
Zharov, V.P.10
-
128
-
-
84876528747
-
PH-Responsive Assembly of Gold Nanoparticles and ″spatiotemporally Concerted″ Drug Release for Synergistic Cancer Therapy
-
Nam, J.; La, W.-G.; Hwang, S.; Ha, Y. S.; Park, N.; Won, N.; Jung, S.; Bhang, S. H.; Ma, Y.-J.; Cho, Y.-M.; Jin, M.; Han, J.; Shin, J.-Y.; Wang, E. K.; Kim, S. G.; Cho, S.-H.; Yoo, J.; Kim, B.-S.; Kim, S. pH-Responsive Assembly of Gold Nanoparticles and ″Spatiotemporally Concerted″ Drug Release for Synergistic Cancer Therapy ACS Nano 2013, 7, 3388-3402 10.1021/nn400223a
-
(2013)
ACS Nano
, vol.7
, pp. 3388-3402
-
-
Nam, J.1
La, W.-G.2
Hwang, S.3
Ha, Y.S.4
Park, N.5
Won, N.6
Jung, S.7
Bhang, S.H.8
Ma, Y.-J.9
Cho, Y.-M.10
Jin, M.11
Han, J.12
Shin, J.-Y.13
Wang, E.K.14
Kim, S.G.15
Cho, S.-H.16
Yoo, J.17
Kim, B.-S.18
Kim, S.19
-
129
-
-
84879638540
-
Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy
-
Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; Chen, X.; Nie, Z. Photosensitizer-Loaded Gold Vesicles with Strong Plasmonic Coupling Effect for Imaging-Guided Photothermal/Photodynamic Therapy ACS Nano 2013, 7, 5320-5329 10.1021/nn4011686
-
(2013)
ACS Nano
, vol.7
, pp. 5320-5329
-
-
Lin, J.1
Wang, S.2
Huang, P.3
Wang, Z.4
Chen, S.5
Niu, G.6
Li, W.7
He, J.8
Cui, D.9
Lu, G.10
Chen, X.11
Nie, Z.12
-
130
-
-
84915789762
-
Designing Multi-Branched Gold Nanoechinus for NIR Light Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window
-
Vijayaraghavan, P.; Liu, C.-H.; Vankayala, R.; Chiang, C.-S.; Hwang, K. C. Designing Multi-Branched Gold Nanoechinus for NIR Light Dual Modal Photodynamic and Photothermal Therapy in the Second Biological Window Adv. Mater. 2014, 26, 6689-6695 10.1002/adma.201400703
-
(2014)
Adv. Mater.
, vol.26
, pp. 6689-6695
-
-
Vijayaraghavan, P.1
Liu, C.-H.2
Vankayala, R.3
Chiang, C.-S.4
Hwang, K.C.5
-
131
-
-
79951879265
-
Gold Nanorod-Photosensitizer Complex for Near Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy in Vivo
-
Jang, B.; Park, J.-Y.; Tung, C.-H.; Kim, I.-H.; Choi, Y. Gold Nanorod-Photosensitizer Complex for Near Infrared Fluorescence Imaging and Photodynamic/Photothermal Therapy In Vivo ACS Nano 2011, 5, 1086-1094 10.1021/nn102722z
-
(2011)
ACS Nano
, vol.5
, pp. 1086-1094
-
-
Jang, B.1
Park, J.-Y.2
Tung, C.-H.3
Kim, I.-H.4
Choi, Y.5
-
132
-
-
80155201448
-
Fate and Toxicity of Metallic and Metal-Containing Nanoparticles for Biomedical Applications
-
Li, Y.-F.; Chen, C. Fate and Toxicity of Metallic and Metal-Containing Nanoparticles for Biomedical Applications Small 2011, 7, 2965-2980 10.1002/smll.201101059
-
(2011)
Small
, vol.7
, pp. 2965-2980
-
-
Li, Y.-F.1
Chen, C.2
-
133
-
-
50649113474
-
Biodistribution of Colloidal Gold Nanoparticles after Intravenous Administration: Effect of Particle Size
-
Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of Colloidal Gold Nanoparticles After Intravenous Administration: Effect of Particle Size Colloids Surf., B 2008, 66, 274-280 10.1016/j.colsurfb.2008.07.004
-
(2008)
Colloids Surf., B
, vol.66
, pp. 274-280
-
-
Sonavane, G.1
Tomoda, K.2
Makino, K.3
-
134
-
-
84875684489
-
Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment
-
Wang, Y.; Black, K. C. L.; Luehmann, H.; Li, W.; Zhang, Y.; Cai, X.; Wan, D.; Liu, S.-Y.; Li, M.; Kim, P.; Li, Z.-Y.; Wang, L. V.; Liu, Y.; Xia, Y. Comparison Study of Gold Nanohexapods, Nanorods, and Nanocages for Photothermal Cancer Treatment ACS Nano 2013, 7, 2068-2077 10.1021/nn304332s
-
(2013)
ACS Nano
, vol.7
, pp. 2068-2077
-
-
Wang, Y.1
Black, K.C.L.2
Luehmann, H.3
Li, W.4
Zhang, Y.5
Cai, X.6
Wan, D.7
Liu, S.-Y.8
Li, M.9
Kim, P.10
Li, Z.-Y.11
Wang, L.V.12
Liu, Y.13
Xia, Y.14
-
135
-
-
84906945934
-
Sub-100 nm Gold Nanomatryoshkas Improve Photo-Thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors
-
Ayala-Orozco, C.; Urban, C.; Bishnoi, S.; Urban, A.; Charron, H.; Mitchell, T.; Shea, M.; Nanda, S.; Schiff, R.; Halas, N.; Joshi, A. Sub-100 nm Gold Nanomatryoshkas Improve Photo-Thermal Therapy Efficacy in Large and Highly Aggressive Triple Negative Breast Tumors J. Controlled Release 2014, 191, 90-97 10.1016/j.jconrel.2014.07.038
-
(2014)
J. Controlled Release
, vol.191
, pp. 90-97
-
-
Ayala-Orozco, C.1
Urban, C.2
Bishnoi, S.3
Urban, A.4
Charron, H.5
Mitchell, T.6
Shea, M.7
Nanda, S.8
Schiff, R.9
Halas, N.10
Joshi, A.11
-
136
-
-
84862323547
-
In vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy
-
Puvanakrishnan, P.; Park, J.; Chatterjee, D.; Krishnan, S.; Tunnell, J. W. In vivo Tumor Targeting of Gold Nanoparticles: Effect of Particle Type and Dosing Strategy Int. J. Nanomed. 2012, 7, 1251-1258 10.2147/IJN.S29147
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 1251-1258
-
-
Puvanakrishnan, P.1
Park, J.2
Chatterjee, D.3
Krishnan, S.4
Tunnell, J.W.5
-
137
-
-
75749088450
-
Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles
-
Choi, C. H. J.; Alabi, C. A.; Webster, P.; Davis, M. E. Mechanism of Active Targeting in Solid Tumors with Transferrin-Containing Gold Nanoparticles Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 1235-1240 10.1073/pnas.0914140107
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 1235-1240
-
-
Choi, C.H.J.1
Alabi, C.A.2
Webster, P.3
Davis, M.E.4
-
138
-
-
78049351925
-
A Reexamination of Active and Passive Tumor Targeting by Using-Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands
-
Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D. M.; El-Sayed, M. A.; Nie, S. A Reexamination of Active and Passive Tumor Targeting by Using-Rod-Shaped Gold Nanocrystals and Covalently Conjugated Peptide Ligands ACS Nano 2010, 4, 5887-5896 10.1021/nn102055s
-
(2010)
ACS Nano
, vol.4
, pp. 5887-5896
-
-
Huang, X.1
Peng, X.2
Wang, Y.3
Wang, Y.4
Shin, D.M.5
El-Sayed, M.A.6
Nie, S.7
-
139
-
-
77952718206
-
Bombesin Functionalized Gold Nanoparticles Show in vitro and in vivo Cancer Receptor Specificity
-
Chanda, N.; Kattumuri, V.; Shukla, R.; Zambre, A.; Katti, K.; Upendran, A.; Kulkarni, R. R.; Kan, P.; Fent, G. M.; Casteel, S. W.; Smith, C. J.; Boote, E.; Robertson, J. D.; Cutler, C.; Lever, J. R.; Katti, K. V.; Kannan, R. Bombesin Functionalized Gold Nanoparticles Show In vitro and In vivo Cancer Receptor Specificity Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 8760-8765 10.1073/pnas.1002143107
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 8760-8765
-
-
Chanda, N.1
Kattumuri, V.2
Shukla, R.3
Zambre, A.4
Katti, K.5
Upendran, A.6
Kulkarni, R.R.7
Kan, P.8
Fent, G.M.9
Casteel, S.W.10
Smith, C.J.11
Boote, E.12
Robertson, J.D.13
Cutler, C.14
Lever, J.R.15
Katti, K.V.16
Kannan, R.17
-
140
-
-
84990978818
-
Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance
-
Kai, M. P.; Brighton, H. E.; Fromen, C. A.; Shen, T. W.; Luft, J. C.; Luft, Y. E.; Keeler, A. W.; Robbins, G. R.; Ting, J. P. Y.; Zamboni, W. C.; Bear, J. E.; DeSimone, J. M. Tumor Presence Induces Global Immune Changes and Enhances Nanoparticle Clearance ACS Nano 2016, 10, 861-870 10.1021/acsnano.5b05999
-
(2016)
ACS Nano
, vol.10
, pp. 861-870
-
-
Kai, M.P.1
Brighton, H.E.2
Fromen, C.A.3
Shen, T.W.4
Luft, J.C.5
Luft, Y.E.6
Keeler, A.W.7
Robbins, G.R.8
Ting, J.P.Y.9
Zamboni, W.C.10
Bear, J.E.11
DeSimone, J.M.12
-
141
-
-
84903783131
-
Zwitterionic-Coated 'stealth' Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona formation and Uptake by the Mononuclear Phagocyte System
-
García, K. P.; Zarschler, K.; Barbaro, L.; Barreto, J. A.; O'Malley, W.; Spiccia, L.; Stephan, H.; Graham, B. Zwitterionic-Coated 'Stealth' Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona formation and Uptake by the Mononuclear Phagocyte System Small 2014, 10, 2516-2529 10.1002/smll.201303540
-
(2014)
Small
, vol.10
, pp. 2516-2529
-
-
García, K.P.1
Zarschler, K.2
Barbaro, L.3
Barreto, J.A.4
O'Malley, W.5
Spiccia, L.6
Stephan, H.7
Graham, B.8
-
142
-
-
55749091647
-
Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts
-
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265-14270 10.1073/pnas.0805135105
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 14265-14270
-
-
Lundqvist, M.1
Stigler, J.2
Elia, G.3
Lynch, I.4
Cedervall, T.5
Dawson, K.A.6
-
143
-
-
84941242137
-
Control of Protein Orientation on Gold Nanoparticles
-
Lin, W.; Insley, T.; Tuttle, M. D.; Zhu, L.; Berthold, D. A.; Král, P.; Rienstra, C. M.; Murphy, C. J. Control of Protein Orientation on Gold Nanoparticles J. Phys. Chem. C 2015, 119, 21035-21043 10.1021/acs.jpcc.5b07701
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 21035-21043
-
-
Lin, W.1
Insley, T.2
Tuttle, M.D.3
Zhu, L.4
Berthold, D.A.5
Král, P.6
Rienstra, C.M.7
Murphy, C.J.8
-
144
-
-
84856423834
-
Understanding and Controlling the Interaction of Nanomaterials with Proteins in a Physiological Environment
-
Walkey, C. D.; Chan, W. C. W. Understanding and Controlling the Interaction of Nanomaterials with Proteins in a Physiological Environment Chem. Soc. Rev. 2012, 41, 2780-2799 10.1039/C1CS15233E
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 2780-2799
-
-
Walkey, C.D.1
Chan, W.C.W.2
-
145
-
-
84869103855
-
Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities
-
Cheng, Z.; Al Zaki, A.; Hui, J. Z.; Muzykantov, V. R.; Tsourkas, A. Multifunctional Nanoparticles: Cost Versus Benefit of Adding Targeting and Imaging Capabilities Science 2012, 338, 903-910 10.1126/science.1226338
-
(2012)
Science
, vol.338
, pp. 903-910
-
-
Cheng, Z.1
Al Zaki, A.2
Hui, J.Z.3
Muzykantov, V.R.4
Tsourkas, A.5
-
146
-
-
77950671121
-
Gold Nanocages as Photothermal Transducers for Cancer Treatment
-
Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Gold Nanocages as Photothermal Transducers for Cancer Treatment Small 2010, 6, 811-817 10.1002/smll.200902216
-
(2010)
Small
, vol.6
, pp. 811-817
-
-
Chen, J.1
Glaus, C.2
Laforest, R.3
Zhang, Q.4
Yang, M.5
Gidding, M.6
Welch, M.J.7
Xia, Y.8
-
147
-
-
84919756190
-
Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy
-
Mooney, R.; Roma, L.; Zhao, D.; Van Haute, D.; Garcia, E.; Kim, S. U.; Annala, A. J.; Aboody, K. S.; Berlin, J. M. Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy ACS Nano 2014, 8, 12450-12460 10.1021/nn505147w
-
(2014)
ACS Nano
, vol.8
, pp. 12450-12460
-
-
Mooney, R.1
Roma, L.2
Zhao, D.3
Van Haute, D.4
Garcia, E.5
Kim, S.U.6
Annala, A.J.7
Aboody, K.S.8
Berlin, J.M.9
-
148
-
-
84876534007
-
Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology
-
Prabhakar, U.; Maeda, H.; Jain, R. K.; Sevick-Muraca, E. M.; Zamboni, W.; Farokhzad, O. C.; Barry, S. T.; Gabizon, A.; Piotr, G.; Blakey, D. C. et al. Challenges and Key Considerations of the Enhanced Permeability and Retention Effect for Nanomedicine Drug Delivery in Oncology Cancer Res. 2013, 73, 2412-2417 10.1158/0008-5472.CAN-12-4561
-
(2013)
Cancer Res.
, vol.73
, pp. 2412-2417
-
-
Prabhakar, U.1
Maeda, H.2
Jain, R.K.3
Sevick-Muraca, E.M.4
Zamboni, W.5
Farokhzad, O.C.6
Barry, S.T.7
Gabizon, A.8
Piotr, G.9
Blakey, D.C.10
-
149
-
-
84879418742
-
Gold Nanoparticles: Emerging Paradigm for Targeted Drug Delivery System
-
Kumar, A.; Zhang, X.; Liang, X.-J. Gold Nanoparticles: Emerging Paradigm for Targeted Drug Delivery System Biotechnol. Adv. 2013, 31, 593-606 10.1016/j.biotechadv.2012.10.002
-
(2013)
Biotechnol. Adv.
, vol.31
, pp. 593-606
-
-
Kumar, A.1
Zhang, X.2
Liang, X.-J.3
-
150
-
-
84960859622
-
-
Nanospectra. (accessed January 28 2016
-
Nanospectra. http://www.nanospectra.com/ (accessed January 28, 2016).
-
-
-
-
151
-
-
0035318612
-
A Clearer Vision for in vivo Imaging
-
Weissleder, R. A Clearer Vision for In vivo Imaging Nat. Biotechnol. 2001, 19, 316-317 10.1038/86684
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 316-317
-
-
Weissleder, R.1
-
152
-
-
60549109918
-
Feasibility Study of Particle-Assisted Laser Ablation of Brain Tumors in Orthotopic Canine Model
-
Schwartz, J. A.; Shetty, A. M.; Price, R. E.; Stafford, R. J.; Wang, J. C.; Uthamanthil, R. K.; Pham, K.; McNichols, R. J.; Coleman, C. L.; Payne, J. D. Feasibility Study of Particle-Assisted Laser Ablation of Brain Tumors in Orthotopic Canine Model Cancer Res. 2009, 69, 1659-1667 10.1158/0008-5472.CAN-08-2535
-
(2009)
Cancer Res.
, vol.69
, pp. 1659-1667
-
-
Schwartz, J.A.1
Shetty, A.M.2
Price, R.E.3
Stafford, R.J.4
Wang, J.C.5
Uthamanthil, R.K.6
Pham, K.7
McNichols, R.J.8
Coleman, C.L.9
Payne, J.D.10
-
155
-
-
84875328942
-
The Gold Standard: Gold Nanoparticle Libraries to Understand the Nano-Bio Interface
-
Alkilany, A. M.; Lohse, S. E.; Murphy, C. J. The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano-Bio Interface Acc. Chem. Res. 2013, 46, 650-661 10.1021/ar300015b
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 650-661
-
-
Alkilany, A.M.1
Lohse, S.E.2
Murphy, C.J.3
-
156
-
-
84960934063
-
-
accessed January 28 2016
-
Athymic Nude Mice http://www.simlab.com/products/nudes.html (accessed January 28, 2016).
-
Athymic Nude Mice
-
-
-
157
-
-
84960923753
-
-
Gold NanoRods. accessed January 28,2016
-
Gold NanoRods. http://nanohybrids.net/products/gold-nanorods-1 (accessed January 28, 2016).
-
-
-
-
158
-
-
84960908100
-
-
Gold NanoRods (accessed January 28,2016
-
Gold NanoRods https://cdn.shopify.com/s/files/1/0259/2325/files/Tech-Specs-NanoHybrid-CTAB-stabilized-PEGylated-Gold-NanoRods.pdf?3044871944869406716 (accessed January 28, 2016)
-
-
-
-
159
-
-
84939251874
-
American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options
-
Schnipper, L. E.; Davidson, N. E.; Wollins, D. S.; Tyne, C.; Blayney, D. W.; Blum, D.; Dicker, A. P.; Ganz, P. A.; Hoverman, J. R.; Langdon, R.; Lyman, G. H.; Meropol, N. J.; Mulvey, T.; Newcomer, L.; peppercorn, J.; Polite, B.; Raghavan, D.; Rossi, G.; Saltz, L.; Schrag, D.; Smith, T. J.; Yu, P. P.; Hudis, C. A.; Schilsky, R. L. American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options J. Clin. Oncol. 2015, 33, 2563-2577 10.1200/JCO.2015.61.6706
-
(2015)
J. Clin. Oncol.
, vol.33
, pp. 2563-2577
-
-
Schnipper, L.E.1
Davidson, N.E.2
Wollins, D.S.3
Tyne, C.4
Blayney, D.W.5
Blum, D.6
Dicker, A.P.7
Ganz, P.A.8
Hoverman, J.R.9
Langdon, R.10
Lyman, G.H.11
Meropol, N.J.12
Mulvey, T.13
Newcomer, L.14
Peppercorn, J.15
Polite, B.16
Raghavan, D.17
Rossi, G.18
Saltz, L.19
Schrag, D.20
Smith, T.J.21
Yu, P.P.22
Hudis, C.A.23
Schilsky, R.L.24
more..
-
160
-
-
84867331231
-
Costs and Trends in Pancreatic Cancer Treatment
-
O'Neill, C. B.; Atoria, C. L.; O'Reilly, E. M.; LaFemina, J.; Henman, M. C.; Elkin, E. B. Costs and Trends in Pancreatic Cancer Treatment Cancer 2012, 118, 5132-5139 10.1002/cncr.27490
-
(2012)
Cancer
, vol.118
, pp. 5132-5139
-
-
O'Neill, C.B.1
Atoria, C.L.2
O'Reilly, E.M.3
LaFemina, J.4
Henman, M.C.5
Elkin, E.B.6
-
161
-
-
84882453745
-
Is the Progression Free Survival Advantage of Concurrent Gemcitabine Plus Cisplatin and Radiation Followed by Adjuvant Gemcitabine and Cisplatin in Patients with Advanced Cervical Cancer Worth the Additional Cost? A Cost-Effective Analysis
-
Smith, B.; Cohn, D. E.; Clements, A.; Tierney, B. J.; Straughn, J. M. Is the Progression Free Survival Advantage of Concurrent Gemcitabine Plus Cisplatin and Radiation Followed by Adjuvant Gemcitabine and Cisplatin in Patients with Advanced Cervical Cancer Worth the Additional Cost? A Cost-Effective Analysis Gynecol. Oncol. 2013, 130, 416-420 10.1016/j.ygyno.2013.05.024
-
(2013)
Gynecol. Oncol.
, vol.130
, pp. 416-420
-
-
Smith, B.1
Cohn, D.E.2
Clements, A.3
Tierney, B.J.4
Straughn, J.M.5
-
162
-
-
84871796632
-
Targeted Nanoparticles in Imaging: Paving the Way for Personalized Medicine in the Battle Against Cancer
-
Shin, S. J.; Beech, J. R.; Kelly, K. A. Targeted Nanoparticles in Imaging: Paving the Way for Personalized Medicine in the Battle Against Cancer Integr. Biol. 2013, 5, 29-42 10.1039/C2IB20047C
-
(2013)
Integr. Biol.
, vol.5
, pp. 29-42
-
-
Shin, S.J.1
Beech, J.R.2
Kelly, K.A.3
|