-
4
-
-
0037119610
-
-
Boyer D., Tamarat P., Maali A., Lounis B., Orrit M. Science 2002, 297:1160-1163.
-
(2002)
Science
, vol.297
, pp. 1160-1163
-
-
Boyer, D.1
Tamarat, P.2
Maali, A.3
Lounis, B.4
Orrit, M.5
-
6
-
-
0038440614
-
-
Pitsillides C.M., Joe E.K., Wei X., Anderson R.R., Lin C.P. Biophys. J. 2003, 84:4023-4032.
-
(2003)
Biophys. J.
, vol.84
, pp. 4023-4032
-
-
Pitsillides, C.M.1
Joe, E.K.2
Wei, X.3
Anderson, R.R.4
Lin, C.P.5
-
7
-
-
0345686712
-
-
Hirsch L.R., Stafford R.J., Bankson J.A., Sershen S.R., Rivera B., Price R.E., Hazle J.D., Halas N.J., West J.L. Proc. Natl. Acad. Sci. U. S. A. 2003, 100(23):13549-13554.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, Issue.23
, pp. 13549-13554
-
-
Hirsch, L.R.1
Stafford, R.J.2
Bankson, J.A.3
Sershen, S.R.4
Rivera, B.5
Price, R.E.6
Hazle, J.D.7
Halas, N.J.8
West, J.L.9
-
8
-
-
33846700781
-
-
Govorov A.O., Zhang W., Skeini T., Richardson H., Lee J., Kotov N.A. Nanoscale Res. Lett. 2006, 1:84-90.
-
(2006)
Nanoscale Res. Lett.
, vol.1
, pp. 84-90
-
-
Govorov, A.O.1
Zhang, W.2
Skeini, T.3
Richardson, H.4
Lee, J.5
Kotov, N.A.6
-
9
-
-
4344586905
-
-
Eastman J.A., Phillpot S.R., Choi S.U.S., Keblinski P. Annu. Rev. Mater. Res. 2004, 34:219-246.
-
(2004)
Annu. Rev. Mater. Res.
, vol.34
, pp. 219-246
-
-
Eastman, J.A.1
Phillpot, S.R.2
Choi, S.U.S.3
Keblinski, P.4
-
11
-
-
79953303723
-
-
Gannon C.J., Patra C.R., Bhattacharya R., Mukherjee P., Curley S.A. J. Nanobiotechnol. 2008, 6(2).
-
(2008)
J. Nanobiotechnol.
, vol.6
, Issue.2
-
-
Gannon, C.J.1
Patra, C.R.2
Bhattacharya, R.3
Mukherjee, P.4
Curley, S.A.5
-
12
-
-
47549117709
-
-
Cardinal J., Klune J.R., Chory E., Jeyabalan G., Kanzius J.S., Nalesnik M., Geller D.A. Surgery 2008, 144:125-132.
-
(2008)
Surgery
, vol.144
, pp. 125-132
-
-
Cardinal, J.1
Klune, J.R.2
Chory, E.3
Jeyabalan, G.4
Kanzius, J.S.5
Nalesnik, M.6
Geller, D.A.7
-
13
-
-
58649104170
-
-
Curley S.A., Cherukuri P., Briggs K., Patra C.R., Upton M., Dolson E., Mukherjee P. J. Exp. Theor. Oncol. 2008, 7(4):313-326.
-
(2008)
J. Exp. Theor. Oncol.
, vol.7
, Issue.4
, pp. 313-326
-
-
Curley, S.A.1
Cherukuri, P.2
Briggs, K.3
Patra, C.R.4
Upton, M.5
Dolson, E.6
Mukherjee, P.7
-
14
-
-
65549110797
-
-
Moran C.H., Wainerdi S.M., Cherukuri T.K., Kittrell C., Wiley B.J., Nicholas N.W., Curley S.A., Kanzius J.S., Cherukuri P. Nano Res. 2009, 2:400-405.
-
(2009)
Nano Res.
, vol.2
, pp. 400-405
-
-
Moran, C.H.1
Wainerdi, S.M.2
Cherukuri, T.K.3
Kittrell, C.4
Wiley, B.J.5
Nicholas, N.W.6
Curley, S.A.7
Kanzius, J.S.8
Cherukuri, P.9
-
15
-
-
47549091421
-
-
Klune J.R., Jeyabalan G., Chory E.S., Kanzius J., Geller D.A. J. Surg. Res. 2007, 137(2):263.
-
(2007)
J. Surg. Res.
, vol.137
, Issue.2
, pp. 263
-
-
Klune, J.R.1
Jeyabalan, G.2
Chory, E.S.3
Kanzius, J.4
Geller, D.A.5
-
16
-
-
79953301654
-
-
Data Sheet of Gold Nanoparticle Colloidal Solutions, Ted Pella, Inc.
-
Data Sheet of Gold Nanoparticle Colloidal Solutions, Ted Pella, Inc. http://www.tedpella.com/gold_html/goldsols.htm.
-
-
-
-
21
-
-
79953327191
-
-
Gold Nanoparticle Reference Materials and their Characterization (RM 8011-8013).
-
V. Hackley, Nanoparticle Standards at NIST: Gold Nanoparticle Reference Materials and their Characterization (RM 8011-8013). http://www.srmors.nist.gov/orderingSRMs.cfm.
-
Nanoparticle Standards at NIST
-
-
Hackley, V.1
-
22
-
-
79953325014
-
-
D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 87th ed., Taylor & Francis, New York, p. 6-15 & p. 12-39.
-
D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics, 87th ed., Taylor & Francis, New York, 2006, p. 6-2, p. 6-15 & p. 12-39.
-
(2006)
, pp. 6-2
-
-
-
24
-
-
79953319312
-
-
Considering that both stock and supernatant solutions show the same heating rate and that relatively low concentrations of solute and NPs are introduced to water, the heat capacity of the aqueous solutions (with or without Au-NP) is assumed to remain unchanged from that of water.
-
Considering that both stock and supernatant solutions show the same heating rate and that relatively low concentrations of solute and NPs are introduced to water, the heat capacity of the aqueous solutions (with or without Au-NP) is assumed to remain unchanged from that of water.
-
-
-
-
27
-
-
31644436278
-
-
Rybakov K.I., Semenov V.E., Egorov S.V., Eremeev A.G., Plotnikov I.V., Bykov Y.V. J. Appl. Phys. 2006, 99:23506-23509.
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 23506-23509
-
-
Rybakov, K.I.1
Semenov, V.E.2
Egorov, S.V.3
Eremeev, A.G.4
Plotnikov, I.V.5
Bykov, Y.V.6
-
30
-
-
79953310201
-
-
The accuracy of impedance measurement with this setup degrades at the high frequency end: note the rapid falloff of the PL curve at ~20MHz in Fig. 6b. Also, the chemical resistance of aluminum may not be as good as that of gold, and the aluminum films (200nm thick) may form an oxide layer over time. Presence of a thin dielectric layer on electrode surface can affect the double layer capacitance. The effect of the interfacial layer capacitances associated with electrodes, however, becomes negligible in the high frequency regime (>1MHz: see Fig. 6c). Overall the valid range of extracting AC conductivity and dielectric constant with this setup is considered to be 1-10MHz.
-
The accuracy of impedance measurement with this setup degrades at the high frequency end: note the rapid falloff of the PL curve at ~20MHz in Fig. 6b. Also, the chemical resistance of aluminum may not be as good as that of gold, and the aluminum films (200nm thick) may form an oxide layer over time. Presence of a thin dielectric layer on electrode surface can affect the double layer capacitance. The effect of the interfacial layer capacitances associated with electrodes, however, becomes negligible in the high frequency regime (>1MHz: see Fig. 6c). Overall the valid range of extracting AC conductivity and dielectric constant with this setup is considered to be 1-10MHz.
-
-
-
-
31
-
-
0037050031
-
-
Hamad-Schifferil K., Schwartz J.J., Santos A.T., Zhang S., Jacobson J.M. Nature 2002, 415:152-155.
-
(2002)
Nature
, vol.415
, pp. 152-155
-
-
Hamad-Schifferil, K.1
Schwartz, J.J.2
Santos, A.T.3
Zhang, S.4
Jacobson, J.M.5
-
32
-
-
31544459915
-
-
Kogan M.J., Bastus N.G., Amigo R., Grillo-Bosch D., Araya E., Turiel A., Labarta A., Giralt E., Puntes V.F. Nano Lett. 2006, 6:110-115.
-
(2006)
Nano Lett.
, vol.6
, pp. 110-115
-
-
Kogan, M.J.1
Bastus, N.G.2
Amigo, R.3
Grillo-Bosch, D.4
Araya, E.5
Turiel, A.6
Labarta, A.7
Giralt, E.8
Puntes, V.F.9
-
35
-
-
79953306147
-
-
Note
-
In Refs. [32,33] (see supporting information therein), the microwave heating of a Au NP was estimated referring to the following formula taken from Ref. [34] (page 405): 4πμ0fFd0dH02, where f is the frequency, and F is a power transmission factor depending on the ratio of cylinder diameter (d) to skin depth (d0) of metal. Their estimation is flawed because the factor 4π×10-7 of the free-space permeability μ0 was omitted and also the power transmission F was erroneously read (it should be read at d/d0=1/80, not 80), causing the induction heating amount overestimated by ten orders of magnitude.
-
-
-
|