메뉴 건너뛰기




Volumn 18, Issue 6, 2013, Pages 707-718

Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: Case study in wyoming

Author keywords

Artificial neural network; Conjugate gradient; Gradient descent; Hydrometeorological data; Levenberg marquardt; Multiple linear regression; Soil temperature

Indexed keywords

GRADIENT DESCENT; HYDROMETEOROLOGICAL DATA; LEVENBERG-MARQUARDT; MULTIPLE LINEAR REGRESSIONS; SOIL TEMPERATURE;

EID: 84879749443     PISSN: 10840699     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)HE.1943-5584.0000666     Document Type: Article
Times cited : (26)

References (36)
  • 1
    • 77956838672 scopus 로고    scopus 로고
    • Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: Evaluation of different ANN learning algorithms
    • Adamowski, J., and Karapataki, C. (2010). "Comparison of multivariate regression and artificial neural networks for peak urban water demand forecasting: Evaluation of different ANN learning algorithms." J. Hydrol. Eng., 15(10), 729-743.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.10 , pp. 729-743
    • Adamowski, J.1    Karapataki, C.2
  • 2
    • 33744900877 scopus 로고    scopus 로고
    • Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm
    • Adeloye, A. J., and Munari, A. (2006). "Artificial neural network based generalized storage-yield-reliability models using the Levenberg-Marquardt algorithm." J. Hydrol., 326(1-4), 215-230.
    • (2006) J. Hydrol. , vol.326 , Issue.1-4 , pp. 215-230
    • Adeloye, A.J.1    Munari, A.2
  • 3
    • 78650014065 scopus 로고    scopus 로고
    • Prediction of soil temperature using regression and artificial neural network models
    • Bilgili, M. (2010). "Prediction of soil temperature using regression and artificial neural network models." Meteorol. Atmos. Phys., 110(1-2), 59-70.
    • (2010) Meteorol. Atmos. Phys. , vol.110 , Issue.1-2 , pp. 59-70
    • Bilgili, M.1
  • 4
    • 77955137293 scopus 로고    scopus 로고
    • GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: A case study in Macau
    • Dongquan, Z., Jining, C., Haozheng, W., Qingyuan, T., Shangbing, C., and Zheng, S. (2009). "GIS-based urban rainfall-runoff modeling using an automatic catchment-discretization approach: A case study in Macau." Environ. Earth Sci., 59(2), 465-472.
    • (2009) Environ. Earth Sci. , vol.59 , Issue.2 , pp. 465-472
    • Dongquan, Z.1    Jining, C.2    Haozheng, W.3    Qingyuan, T.4    Shangbing, C.5    Zheng, S.6
  • 5
    • 54049108802 scopus 로고    scopus 로고
    • On the relevance of using artificial neural networks for estimating soil moisture content
    • Elshorbagy, A., and Parasuraman, K. (2008). "On the relevance of using artificial neural networks for estimating soil moisture content." J. Hydrol., 362(1-2), 1-18.
    • (2008) J. Hydrol. , vol.362 , Issue.1-2 , pp. 1-18
    • Elshorbagy, A.1    Parasuraman, K.2
  • 6
    • 71849087174 scopus 로고    scopus 로고
    • Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity
    • Erzin, Y., Rao, B. H., Patel, A., Gumaste, S. D., and Singh, D. N. (2010). "Artificial neural network models for predicting electrical resistivity of soils from their thermal resistivity." Int. J. Therm. Sci., 49(1), 118-130.
    • (2010) Int. J. Therm. Sci. , vol.49 , Issue.1 , pp. 118-130
    • Erzin, Y.1    Rao, B.H.2    Patel, A.3    Gumaste, S.D.4    Singh, D.N.5
  • 7
    • 33747405169 scopus 로고    scopus 로고
    • Comparison of three alternative ANN designs for monthly rainfall-runoff simulation
    • Garbrecht, J. D. (2006). "Comparison of three alternative ANN designs for monthly rainfall-runoff simulation." J. Hydrol. Eng., 11(5), 502-505.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.5 , pp. 502-505
    • Garbrecht, J.D.1
  • 8
    • 0035424839 scopus 로고    scopus 로고
    • Prediction of soil temperature by using artificial neural networks algorithms
    • George, R. K. (2001). "Prediction of soil temperature by using artificial neural networks algorithms." Nonlinear Anal., 47(3), 1737-1748.
    • (2001) Nonlinear Anal. , vol.47 , Issue.3 , pp. 1737-1748
    • George, R.K.1
  • 9
    • 0002824920 scopus 로고
    • Global convergence properties of conjugate gradient methods for optimization
    • Gilbert, J. C., and Nocedal, J. (1992). "Global convergence properties of conjugate gradient methods for optimization." SIAM J. Optim., 2(1), 21-42.
    • (1992) SIAM J. Optim. , vol.2 , Issue.1 , pp. 21-42
    • Gilbert, J.C.1    Nocedal, J.2
  • 11
    • 54049100690 scopus 로고    scopus 로고
    • A neural network approach to simple prediction of soil nitrification potential: A case study in Japanese temperate forests
    • Ito, E., Ono, K., Ito, Y. M., and Araki, M. (2008). "A neural network approach to simple prediction of soil nitrification potential: A case study in Japanese temperate forests." Ecol. Modell., 219(1-2), 200-211.
    • (2008) Ecol. Modell. , vol.219 , Issue.1-2 , pp. 200-211
    • Ito, E.1    Ono, K.2    Ito, Y.M.3    Araki, M.4
  • 12
    • 39549114408 scopus 로고    scopus 로고
    • Development of integrated discharge and sediment rating relation using a compound neural network
    • Jain, S. K. (2008). "Development of integrated discharge and sediment rating relation using a compound neural network." J. Hydrol. Eng., 13(3), 124-131.
    • (2008) J. Hydrol. Eng. , vol.13 , Issue.3 , pp. 124-131
    • Jain, S.K.1
  • 13
    • 53549097342 scopus 로고    scopus 로고
    • Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas
    • Kim, M., and Gilley, J. E. (2008). "Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas." Comput. Electron. Agric., 64(2), 268-275.
    • (2008) Comput. Electron. Agric. , vol.64 , Issue.2 , pp. 268-275
    • Kim, M.1    Gilley, J.E.2
  • 14
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi, O. (2007). "Streamflow forecasting using different artificial neural network algorithms." J. Hydrol. Eng., 12(5), 532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 15
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent streamflow forecasting
    • Kisi, O. (2009). "Neural networks and wavelet conjunction model for intermittent streamflow forecasting." J. Hydrol. Eng., 14(8), 773-782.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 16
    • 77954384995 scopus 로고    scopus 로고
    • River suspended sediment concentration modeling using a neural differential evolution approach
    • Kisi, O. (2010). "River suspended sediment concentration modeling using a neural differential evolution approach." J. Hydrol., 389(1-2), 227-235.
    • (2010) J. Hydrol. , vol.389 , Issue.1-2 , pp. 227-235
    • Kisi, O.1
  • 17
    • 0027871482 scopus 로고
    • A conceptual model for predicting soil temperatures
    • Kluender, R. A., Thompson, L. C., and Steigerwald, D. M. (1993). "A conceptual model for predicting soil temperatures." Soil Sci., 156(1), 10-19.
    • (1993) Soil Sci. , vol.156 , Issue.1 , pp. 10-19
    • Kluender, R.A.1    Thompson, L.C.2    Steigerwald, D.M.3
  • 18
    • 77958489667 scopus 로고    scopus 로고
    • Highresolution space-time rainfall analysis using integrated ANN inference systems
    • Langella, G., Basile, A., Bonfante, A., and Terribile, F. (2010). "Highresolution space-time rainfall analysis using integrated ANN inference systems." J. Hydrol., 387(3-4), 328-342.
    • (2010) J. Hydrol. , vol.387 , Issue.3-4 , pp. 328-342
    • Langella, G.1    Basile, A.2    Bonfante, A.3    Terribile, F.4
  • 19
    • 33746893825 scopus 로고    scopus 로고
    • Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity
    • Merdun, H., Cinar, O., Meral, R., and Apan, M. (2006). "Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity." Soil Tillage Res., 90(1-2), 108-116.
    • (2006) Soil Tillage Res. , vol.90 , Issue.1-2 , pp. 108-116
    • Merdun, H.1    Cinar, O.2    Meral, R.3    Apan, M.4
  • 20
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models
    • Mukerji, A., Chatterjee, C., and Raghuwanshi, N. S. (2009). "Flood forecasting using ANN, neuro-fuzzy, and neuro-GA models." J. Hydrol. Eng., 14(6), 647-652.
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.6 , pp. 647-652
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 21
    • 33751550700 scopus 로고    scopus 로고
    • Time-series analysis of a heterolithic, ripple-laminated deposit (Early Jurassic, Tilje Formation) and implications for reservoir modeling
    • Nordahl, K., Martinius, A. W., and Kritski, A. (2006). "Time-series analysis of a heterolithic, ripple-laminated deposit (Early Jurassic, Tilje Formation) and implications for reservoir modeling." Mar. Geol., 235(1-4), 255-271.
    • (2006) Mar. Geol. , vol.235 , Issue.1-4 , pp. 255-271
    • Nordahl, K.1    Martinius, A.W.2    Kritski, A.3
  • 22
    • 79960795064 scopus 로고    scopus 로고
    • Artificial neural network model for estimating the soil temperature
    • Ozturk, M., Salman, O., and Koc, M. (2011). "Artificial neural network model for estimating the soil temperature." Can. J. Soil Sci., 91(4), 551-562.
    • (2011) Can. J. Soil Sci. , vol.91 , Issue.4 , pp. 551-562
    • Ozturk, M.1    Salman, O.2    Koc, M.3
  • 23
    • 49849106661 scopus 로고    scopus 로고
    • An ANN application for water quality forecasting
    • Palani, S., Liong, S. Y., and Tkalich, P. (2008). "An ANN application for water quality forecasting." Mar. Pollut. Bull., 56(9), 1586-1597.
    • (2008) Mar. Pollut. Bull. , vol.56 , Issue.9 , pp. 1586-1597
    • Palani, S.1    Liong, S.Y.2    Tkalich, P.3
  • 25
    • 31444443313 scopus 로고    scopus 로고
    • Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India
    • Raghuwanshi, N. S., Singh, R., and Reddy, L. S. (2006). "Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India." J. Hydrol. Eng., 11(1), 71-80.
    • (2006) J. Hydrol. Eng. , vol.11 , Issue.1 , pp. 71-80
    • Raghuwanshi, N.S.1    Singh, R.2    Reddy, L.S.3
  • 26
    • 79961076393 scopus 로고    scopus 로고
    • River suspended sediment load prediction: Application of ANN and wavelet conjunction model
    • Rajaee, T., Nourani, V., Zounemat-Kermani, M., and Kisi, O. (2011). "River suspended sediment load prediction: Application of ANN and wavelet conjunction model." J. Hydrol. Eng., 16(8), 613-627.
    • (2011) J. Hydrol. Eng. , vol.16 , Issue.8 , pp. 613-627
    • Rajaee, T.1    Nourani, V.2    Zounemat-Kermani, M.3    Kisi, O.4
  • 27
    • 11244330611 scopus 로고    scopus 로고
    • A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: Model description and testing
    • Rankinen, K., Karvonen, T., and Butterfield, D. (2004). "A simple model for predicting soil temperature in snow-covered and seasonally frozen soil: Model description and testing." Hydrol. Earth Syst. Sci., 8(4), 706-716.
    • (2004) Hydrol. Earth Syst. Sci. , vol.8 , Issue.4 , pp. 706-716
    • Rankinen, K.1    Karvonen, T.2    Butterfield, D.3
  • 28
    • 0004048082 scopus 로고
    • Prentice-Hall, Englewood Cliffs, NJ
    • Singh, V. P. (1992). Elementary hydrology, Prentice-Hall, Englewood Cliffs, NJ.
    • (1992) Elementary hydrology
    • Singh, V.P.1
  • 29
    • 78650738248 scopus 로고    scopus 로고
    • Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region
    • Tabari, H., Sabziparvar, A. K., and Ahmadi, M. (2011). "Comparison of artificial neural network and multivariate linear regression methods for estimation of daily soil temperature in an arid region." Meteorol. Atmos. Phys., 110(3-4), 135-142.
    • (2011) Meteorol. Atmos. Phys. , vol.110 , Issue.3-4 , pp. 135-142
    • Tabari, H.1    Sabziparvar, A.K.2    Ahmadi, M.3
  • 30
    • 20444494282 scopus 로고    scopus 로고
    • Case study: Finite element method and artificial neural network models for flow through Jeziorsko Earthfill Dam in Poland
    • Tayfur, G., Swiate, K. D., Wita, A., and Singh, V. P. (2005). "Case study: Finite element method and artificial neural network models for flow through Jeziorsko Earthfill Dam in Poland." J. Hydraul. Eng., 131(6), 431-440.
    • (2005) J. Hydraul. Eng. , vol.131 , Issue.6 , pp. 431-440
    • Tayfur, G.1    Swiate, K.D.2    Wita, A.3    Singh, V.P.4
  • 31
    • 0031898654 scopus 로고    scopus 로고
    • River stage forecasting using artificial neural networks
    • Thirumalaiah, K., and Deo, M. C. (1998). "River stage forecasting using artificial neural networks." J. Hydrol. Eng., 3(1), 26-33.
    • (1998) J. Hydrol. Eng. , vol.3 , Issue.1 , pp. 26-33
    • Thirumalaiah, K.1    Deo, M.C.2
  • 32
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar, A. S., and Johnson, P. A. (1999). "Rainfall-runoff modeling using artificial neural networks." J. Hydrol. Eng., 4(3), 232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 33
    • 0030815809 scopus 로고    scopus 로고
    • An artificial neural network to estimate soil temperature
    • Yang, C. C., Prasher, S. O., and Mehuys, G. R. (1997). "An artificial neural network to estimate soil temperature." Can. J. Soil Sci., 77(3), 421-429.
    • (1997) Can. J. Soil Sci. , vol.77 , Issue.3 , pp. 421-429
    • Yang, C.C.1    Prasher, S.O.2    Mehuys, G.R.3
  • 34
    • 79151474442 scopus 로고    scopus 로고
    • Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils
    • Yilmaz, I., and Kaynar, O. (2011). "Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils." Expert Syst. Appl., 38(5), 5958-5966.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.5 , pp. 5958-5966
    • Yilmaz, I.1    Kaynar, O.2
  • 35
    • 0027143345 scopus 로고
    • Predicting forest soil temperatures from monthly air temperature and precipitation records
    • Yin, X., and Arp, P. A. (1993). "Predicting forest soil temperatures from monthly air temperature and precipitation records." Can. J. For. Res., 23(12), 2521-2536.
    • (1993) Can. J. For. Res. , vol.23 , Issue.12 , pp. 2521-2536
    • Yin, X.1    Arp, P.A.2
  • 36
    • 58549088485 scopus 로고    scopus 로고
    • Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system
    • Zounemat-Kermani, M., Beheshti, A. A., Ataie-Ashtiani, B., and Sabbagh-Yazdi, S. R. (2009). "Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system." Appl. Soft Comput., 9(2), 746-755.
    • (2009) Appl. Soft Comput. , vol.9 , Issue.2 , pp. 746-755
    • Zounemat-Kermani, M.1    Beheshti, A.A.2    Ataie-Ashtiani, B.3    Sabbagh-Yazdi, S.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.