-
1
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
Pearson K. 1901 On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559-572. (doi:10.1080/14786440109462720)
-
(1901)
Phil. Mag
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
2
-
-
58149421595
-
Analysis of a complex of statistical variables into principal components
-
498-520
-
Hotelling H. 1933 Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417-441, 498-520. (doi:10.1037/h0071325)
-
(1933)
J. Educ. Psychol
, vol.24
, pp. 417-441
-
-
Hotelling, H.1
-
7
-
-
0004151494
-
-
Cambridge, UK: Cambridge University Press
-
Horn R, Johnson C. 1985 Matrix analysis. Cambridge, UK: Cambridge University Press.
-
(1985)
Matrix Analysis
-
-
Horn, R.1
Johnson, C.2
-
8
-
-
51649161421
-
An extension of some optimal properties of principal components
-
Hudlet R, Johnson RA 1982 An extension of some optimal properties of principal components. Ann. Inst. Statist. Math. 34, 105-110. (doi:10.1007/BF02481011)
-
(1982)
Ann. Inst. Statist. Math
, vol.34
, pp. 105-110
-
-
Hudlet, R.1
Johnson, R.A.2
-
9
-
-
0002154342
-
Optimality of principal components
-
(ed. PR Krishnaiah) New York, NY: Academic Press
-
Okamoto M. 1969 Optimality of principal components. In Multivariate analysis II(ed. PR Krishnaiah), pp. 673-685. New York, NY: Academic Press.
-
(1969)
Multivariate Analysis II
, pp. 673-685
-
-
Okamoto, M.1
-
10
-
-
0021427712
-
Principal variables
-
McCabe GP. 1984 Principal variables. Technometrics 26, 137-144. (doi:10.1080/00401706.1984.10487939)
-
(1984)
Technometrics
, vol.26
, pp. 137-144
-
-
McCabe, G.P.1
-
11
-
-
4444375377
-
Computational aspects of algorithms for variable selection in the context of principal components
-
Cadima J, Cerdeira JO, Minhoto M. 2004 Computational aspects of algorithms for variable selection in the context of principal components. Comp. Stat. Data Anal. 47, 225-236. (doi:10.1016/j.csda.2003.11.001)
-
(2004)
Comp. Stat. Data Anal.
, vol.47
, pp. 225-236
-
-
Cadima, J.1
Cerdeira, J.O.2
Minhoto, M.3
-
12
-
-
84906541068
-
Dietary specializations and diversity in feeding ecology of the earliest stem mammals
-
Gill PG, Purnell MA, Crumpton N, Brown K.R., Gostling NJ, Stampanoni M, Rayfield EJ. 2014 Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512, 303-305. (doi:10.1038/nature13622)
-
(2014)
Nature
, vol.512
, pp. 303-305
-
-
Gill, P.G.1
Purnell, M.A.2
Crumpton, N.3
Brown, K.R.4
Gostling, N.J.5
Stampanoni, M.6
Rayfield, E.J.7
-
13
-
-
78650649545
-
-
Vienna, Austria: R Foundation for Statistical Computing
-
R Development Core Team. 2015 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.R-project.org.
-
(2015)
R: A Language and Environment for Statistical Computing
-
-
-
14
-
-
77956887176
-
The biplot graphical display of matrices with application to principal component analysis
-
Gabriel KR. 1971 The biplot graphical display of matrices with application to principal component analysis. Biometrika 58, 453-467. (doi:10.1093/biomet/58.3.453)
-
(1971)
Biometrika
, vol.58
, pp. 453-467
-
-
Gabriel, K.R.1
-
15
-
-
70849133998
-
On relationships between uncentred and column-centred principal component analysis
-
Cadima J, Jolliffe IT 2009 On relationships between uncentred and column-centred principal component analysis. Pak. J. Stat. 25, 473-503.
-
(2009)
Pak. J. Stat
, vol.25
, pp. 473-503
-
-
Cadima, J.1
Jolliffe, I.T.2
-
16
-
-
40449141013
-
What is principal component analysis?
-
Ringner M. 2008 What is principal component analysis? Nat. Biotechnol. 26, 303-304. (doi:10.1038/nbt0308-303)
-
(2008)
Nat. Biotechnol
, vol.26
, pp. 303-304
-
-
Ringner, M.1
-
17
-
-
77954586272
-
Super-sparse principal component analyses for highthroughput genomic data
-
Lee D, Lee W, Lee Y., Pawitan Y. 2010 Super-sparse principal component analyses for highthroughput genomic data. BMC Bioinform. 11, 296. (doi:10.1186/1471-2105-11-296)
-
(2010)
BMC Bioinform
, vol.11
, pp. 296
-
-
Lee, D.1
Lee, W.2
Lee, Y.3
Pawitan, Y.4
-
18
-
-
84879351019
-
Minimax bounds for sparse PCA with noisy high-dimensional data
-
Birnbaum A, Johnstone IM, Nadler B, Paul D. 2013 Minimax bounds for sparse PCA with noisy high-dimensional data. Ann. Stat. 41, 1055-1084. (doi:10.1214/12-AOS1014)
-
(2013)
Ann. Stat
, vol.41
, pp. 1055-1084
-
-
Birnbaum, A.1
Johnstone, I.M.2
Nadler, B.3
Paul, D.4
-
19
-
-
66549088006
-
On consistency and sparsity for principal components analysis in high dimensions
-
Johnstone IM, Lu AY 2009 On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104, 682-693. (doi:10.1198/jasa.2009.0121)
-
(2009)
J. Am. Stat. Assoc
, vol.104
, pp. 682-693
-
-
Johnstone, I.M.1
Lu, A.Y.2
-
21
-
-
0002289285
-
Some statistical methods for comparison of growth curves
-
Rao CR. 1958 Some statistical methods for comparison of growth curves. Biometrics 14, 1-17. (doi:10.2307/2527726)
-
(1958)
Biometrics
, vol.14
, pp. 1-17
-
-
Rao, C.R.1
-
22
-
-
84901791646
-
Selecting the number of principal components in functional data
-
Li Y, Wang N, Carroll RJ 2013 Selecting the number of principal components in functional data. J. Am. Stat. Assoc. 108, 1284-1294. (doi:10.1080/01621459.2013.788980)
-
(2013)
J. Am. Stat. Assoc
, vol.108
, pp. 1284-1294
-
-
Li, Y.1
Wang, N.2
Carroll, R.J.3
-
23
-
-
84946962840
-
S-estimators for functional principal components
-
Boente G, Silibian-Barrera M. 2015 S-estimators for functional principal components. J. Am. Stat. Assoc. 110, 1100-1111. doi:10.1080/01621459.2014.946991)
-
(2015)
J. Am. Stat. Assoc
, vol.110
, pp. 1100-1111
-
-
Boente, G.1
Silibian-Barrera, M.2
-
24
-
-
84922159371
-
Dynamic functional principal components
-
Hörmann S., Kidziński L, Hallin M. 2015 Dynamic functional principal components. J. R. Stat. Soc. B 77, 319-348. (doi:10.1111/rssb.12076)
-
(2015)
J. R. Stat. Soc. B
, vol.77
, pp. 319-348
-
-
Hörmann, S.1
Kidziński, L.2
Hallin, M.3
-
27
-
-
0141941674
-
A modified principal component technique based on the LASSO
-
Jolliffe IT, Trendafilov N, Uddin M. 2003 A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531-547. (doi:10.1198/1061860032148)
-
(2003)
J. Comput. Graph. Stat
, vol.12
, pp. 531-547
-
-
Jolliffe, I.T.1
Trendafilov, N.2
Uddin, M.3
-
30
-
-
70149096300
-
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
-
Witten D, Tibshirani R, Hastie T. 2009 A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-534. (doi:10.1093/biostatistics/kxp008)
-
(2009)
Biostatistics
, vol.10
, pp. 515-534
-
-
Witten, D.1
Tibshirani, R.2
Hastie, T.3
-
31
-
-
34548514458
-
A direct formulation for sparse PCA using semidefinite programming
-
d'Aspremont A., El Ghaoui L, Jordan MI, Lanckriet GRG. 2007 A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49, 434-448. (doi:10.1137/050645506)
-
(2007)
SIAM Rev
, vol.49
, pp. 434-448
-
-
D'Aspremont, A.1
El Ghaoui, L.2
Jordan, M.I.3
Lanckriet, G.R.G.4
-
32
-
-
84922565321
-
Sparsistency and agnostic inference in sparse PCA
-
Lei J, Vu VQ 2015 Sparsistency and agnostic inference in sparse PCA. Ann. Stat. 43, 299-322. (doi:10.1214/14-AOS1273)
-
(2015)
Ann. Stat
, vol.43
, pp. 299-322
-
-
Lei, J.1
Vu, V.Q.2
-
33
-
-
0000192559
-
Statistically homogeneous fields on a sphere
-
Obukhov AM. 1947 Statistically homogeneous fields on a sphere. Usp. Mat. Navk. 2, 196-198.
-
(1947)
Usp. Mat. Navk
, vol.2
, pp. 196-198
-
-
Obukhov, A.M.1
-
36
-
-
31944433231
-
In search of simple structures in climate: Simplifying EOFs
-
Hannachi A, Jolliffe IT, Stephenson D.B., Trendafilov N. 2006 In search of simple structures in climate: simplifying EOFs. Int. J. Climatol. 26, 7-28. (doi:10.1002/joc.1243)
-
(2006)
Int. J. Climatol
, vol.26
, pp. 7-28
-
-
Hannachi, A.1
Jolliffe, I.T.2
Stephenson, D.B.3
Trendafilov, N.4
-
37
-
-
0003531918
-
-
Philadelphia, PA: Society for Industrial and Applied Mathematics
-
Huber PJ. 1977 Robust statistical procedures. Philadelphia, PA: Society for Industrial and Applied Mathematics.
-
(1977)
Robust Statistical Procedures
-
-
Huber, P.J.1
-
39
-
-
0000714244
-
A robust principal component analysis
-
Ruymagaart FH. 1981 A robust principal component analysis. J. Multivariate Anal. 11, 485-497. (doi:10.1016/0047-259X(81)90091-9)
-
(1981)
J. Multivariate Anal.
, vol.11
, pp. 485-497
-
-
Ruymagaart, F.H.1
-
40
-
-
84907518855
-
Efficient R-estimation of principal and common principal components
-
Hallin M, Paindaveine D, Verdebout T. 2014 Efficient R-estimation of principal and common principal components. J. Am. Stat. Assoc. 109, 1071-1083. (doi:10.1080/01621459.2014.880057)
-
(2014)
J. Am. Stat. Assoc
, vol.109
, pp. 1071-1083
-
-
Hallin, M.1
Paindaveine, D.2
Verdebout, T.3
-
41
-
-
84947791529
-
-
2nd edn. Wiley Series in Probability and Statistics. New York, NY: Wiley
-
Huber PJ, Ronchetti EM 2009 Robust statistics, 2nd edn. Wiley Series in Probability and Statistics. New York, NY: Wiley.
-
(2009)
Robust Statistics
-
-
Huber, P.J.1
Ronchetti, E.M.2
-
42
-
-
0141742284
-
A framework for robust subspace learning
-
De la Torre F, Black MJ. 2003 A framework for robust subspace learning. Int. J. Comput. Vis. 54, 117-142. (doi:10.1023/A:1023709501986)
-
(2003)
Int. J. Comput. Vis.
, vol.54
, pp. 117-142
-
-
De La Torre, F.1
Black, M.J.2
-
43
-
-
84863367863
-
Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization
-
Vancouver, BC, Canada, 7-10 December 2009
-
Wright J, Peng Y, Ma Y., Ganesh A, Rao S. 2009 Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In Proc. of Neural Information Processing Systems 2009 (NIPS 2009), Vancouver, BC, Canada, 7-10 December 2009. See http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization.pdf.
-
(2009)
Proc. Of Neural Information Processing Systems 2009 (NIPS 2009)
-
-
Wright, J.1
Peng, Y.2
Ma, Y.3
Ganesh, A.4
Rao, S.5
-
44
-
-
79960675858
-
Robust principal component analysis?
-
Candès E.J., Li X, Ma Y., Wright J. 2011 Robust principal component analysis? J. ACM 58, 11:1-11:37.
-
(2011)
J. ACM
, vol.58
, pp. 1101-1137
-
-
Candès, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
45
-
-
84919880480
-
Robust principal component analysis with complex noise
-
Beijing, China, 21-26 June 2014
-
Zhao Q, Meng D, Xu Z., Zuo W, Zhang L. 2014 Robust principal component analysis with complex noise. In Proc. of the 31st Int. Conf. on Machine Learning, Beijing, China, 21-26 June 2014. See http://jmlr.org/proceedings/papers/v32/zhao14.pdf.
-
(2014)
Proc. Of the 31st Int. Conf. on Machine Learning
-
-
Zhao, Q.1
Meng, D.2
Xu, Z.3
Zuo, W.4
Zhang, L.5
-
46
-
-
84898079839
-
Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance
-
Bouwmans T, Zahzah E. 2014 Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22-34. (doi:10.1016/j.cviu.2013.11.009)
-
(2014)
Comput. Vis. Image Underst
, vol.122
, pp. 22-34
-
-
Bouwmans, T.1
Zahzah, E.2
-
48
-
-
84906487104
-
Symbolic data analysis: Another look at the interaction of data mining and statistics
-
Brito P. 2014 Symbolic data analysis: another look at the interaction of data mining and statistics. WIREs Data Mining Knowl. Discov. 4, 281-295. (doi:10.1002/widm.1133)
-
(2014)
WIREs Data Mining Knowl. Discov
, vol.4
, pp. 281-295
-
-
Brito, P.1
-
49
-
-
0028408227
-
Generalized minkowski metrics for mixed feature type data analysis
-
Ichino M, Yaguchi H. 1994 Generalized Minkowski metrics for mixed feature type data analysis. IEEE Trans. Syst. Man Cybern. 24, 698-708. (doi:10.1109/21.286391)
-
(1994)
IEEE Trans. Syst. Man Cybern
, vol.24
, pp. 698-708
-
-
Ichino, M.1
Yaguchi, H.2
-
50
-
-
84969837153
-
Principal axes analysis of symbolic histogram variables
-
In press
-
Makosso-Kallyth S. In press. Principal axes analysis of symbolic histogram variables. Stat. Anal. Data Mining. (doi:10.1002/sam.11270)
-
Stat. Anal. Data Mining
-
-
Makosso-Kallyth, S.1
-
51
-
-
62849102881
-
Clustering and disjoint principal component analysis
-
Vichi M, Saporta G. 2009 Clustering and disjoint principal component analysis. Comp. Stat. Data Anal. 53, 3194-3208. (doi:10.1016/j.csda.2008.05.028)
-
(2009)
Comp. Stat. Data Anal.
, vol.53
, pp. 3194-3208
-
-
Vichi, M.1
Saporta, G.2
|