메뉴 건너뛰기




Volumn 374, Issue 2065, 2016, Pages

Principal component analysis: A review and recent developments

Author keywords

Dimension reduction; Eigenvectors; Multivariate analysis; Palaeontology

Indexed keywords

EIGENVALUES AND EIGENFUNCTIONS; MULTIVARIANT ANALYSIS;

EID: 84960361801     PISSN: 1364503X     EISSN: None     Source Type: Journal    
DOI: 10.1098/rsta.2015.0202     Document Type: Review
Times cited : (5151)

References (51)
  • 1
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • Pearson K. 1901 On lines and planes of closest fit to systems of points in space. Phil. Mag. 2, 559-572. (doi:10.1080/14786440109462720)
    • (1901) Phil. Mag , vol.2 , pp. 559-572
    • Pearson, K.1
  • 2
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • 498-520
    • Hotelling H. 1933 Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417-441, 498-520. (doi:10.1037/h0071325)
    • (1933) J. Educ. Psychol , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 7
    • 0004151494 scopus 로고
    • Cambridge, UK: Cambridge University Press
    • Horn R, Johnson C. 1985 Matrix analysis. Cambridge, UK: Cambridge University Press.
    • (1985) Matrix Analysis
    • Horn, R.1    Johnson, C.2
  • 8
    • 51649161421 scopus 로고
    • An extension of some optimal properties of principal components
    • Hudlet R, Johnson RA 1982 An extension of some optimal properties of principal components. Ann. Inst. Statist. Math. 34, 105-110. (doi:10.1007/BF02481011)
    • (1982) Ann. Inst. Statist. Math , vol.34 , pp. 105-110
    • Hudlet, R.1    Johnson, R.A.2
  • 9
    • 0002154342 scopus 로고
    • Optimality of principal components
    • (ed. PR Krishnaiah) New York, NY: Academic Press
    • Okamoto M. 1969 Optimality of principal components. In Multivariate analysis II(ed. PR Krishnaiah), pp. 673-685. New York, NY: Academic Press.
    • (1969) Multivariate Analysis II , pp. 673-685
    • Okamoto, M.1
  • 10
    • 0021427712 scopus 로고
    • Principal variables
    • McCabe GP. 1984 Principal variables. Technometrics 26, 137-144. (doi:10.1080/00401706.1984.10487939)
    • (1984) Technometrics , vol.26 , pp. 137-144
    • McCabe, G.P.1
  • 11
    • 4444375377 scopus 로고    scopus 로고
    • Computational aspects of algorithms for variable selection in the context of principal components
    • Cadima J, Cerdeira JO, Minhoto M. 2004 Computational aspects of algorithms for variable selection in the context of principal components. Comp. Stat. Data Anal. 47, 225-236. (doi:10.1016/j.csda.2003.11.001)
    • (2004) Comp. Stat. Data Anal. , vol.47 , pp. 225-236
    • Cadima, J.1    Cerdeira, J.O.2    Minhoto, M.3
  • 13
    • 78650649545 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing
    • R Development Core Team. 2015 R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.R-project.org.
    • (2015) R: A Language and Environment for Statistical Computing
  • 14
    • 77956887176 scopus 로고
    • The biplot graphical display of matrices with application to principal component analysis
    • Gabriel KR. 1971 The biplot graphical display of matrices with application to principal component analysis. Biometrika 58, 453-467. (doi:10.1093/biomet/58.3.453)
    • (1971) Biometrika , vol.58 , pp. 453-467
    • Gabriel, K.R.1
  • 15
    • 70849133998 scopus 로고    scopus 로고
    • On relationships between uncentred and column-centred principal component analysis
    • Cadima J, Jolliffe IT 2009 On relationships between uncentred and column-centred principal component analysis. Pak. J. Stat. 25, 473-503.
    • (2009) Pak. J. Stat , vol.25 , pp. 473-503
    • Cadima, J.1    Jolliffe, I.T.2
  • 16
    • 40449141013 scopus 로고    scopus 로고
    • What is principal component analysis?
    • Ringner M. 2008 What is principal component analysis? Nat. Biotechnol. 26, 303-304. (doi:10.1038/nbt0308-303)
    • (2008) Nat. Biotechnol , vol.26 , pp. 303-304
    • Ringner, M.1
  • 17
    • 77954586272 scopus 로고    scopus 로고
    • Super-sparse principal component analyses for highthroughput genomic data
    • Lee D, Lee W, Lee Y., Pawitan Y. 2010 Super-sparse principal component analyses for highthroughput genomic data. BMC Bioinform. 11, 296. (doi:10.1186/1471-2105-11-296)
    • (2010) BMC Bioinform , vol.11 , pp. 296
    • Lee, D.1    Lee, W.2    Lee, Y.3    Pawitan, Y.4
  • 18
    • 84879351019 scopus 로고    scopus 로고
    • Minimax bounds for sparse PCA with noisy high-dimensional data
    • Birnbaum A, Johnstone IM, Nadler B, Paul D. 2013 Minimax bounds for sparse PCA with noisy high-dimensional data. Ann. Stat. 41, 1055-1084. (doi:10.1214/12-AOS1014)
    • (2013) Ann. Stat , vol.41 , pp. 1055-1084
    • Birnbaum, A.1    Johnstone, I.M.2    Nadler, B.3    Paul, D.4
  • 19
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone IM, Lu AY 2009 On consistency and sparsity for principal components analysis in high dimensions. J. Am. Stat. Assoc. 104, 682-693. (doi:10.1198/jasa.2009.0121)
    • (2009) J. Am. Stat. Assoc , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 21
    • 0002289285 scopus 로고
    • Some statistical methods for comparison of growth curves
    • Rao CR. 1958 Some statistical methods for comparison of growth curves. Biometrics 14, 1-17. (doi:10.2307/2527726)
    • (1958) Biometrics , vol.14 , pp. 1-17
    • Rao, C.R.1
  • 22
    • 84901791646 scopus 로고    scopus 로고
    • Selecting the number of principal components in functional data
    • Li Y, Wang N, Carroll RJ 2013 Selecting the number of principal components in functional data. J. Am. Stat. Assoc. 108, 1284-1294. (doi:10.1080/01621459.2013.788980)
    • (2013) J. Am. Stat. Assoc , vol.108 , pp. 1284-1294
    • Li, Y.1    Wang, N.2    Carroll, R.J.3
  • 23
    • 84946962840 scopus 로고    scopus 로고
    • S-estimators for functional principal components
    • Boente G, Silibian-Barrera M. 2015 S-estimators for functional principal components. J. Am. Stat. Assoc. 110, 1100-1111. doi:10.1080/01621459.2014.946991)
    • (2015) J. Am. Stat. Assoc , vol.110 , pp. 1100-1111
    • Boente, G.1    Silibian-Barrera, M.2
  • 24
    • 84922159371 scopus 로고    scopus 로고
    • Dynamic functional principal components
    • Hörmann S., Kidziński L, Hallin M. 2015 Dynamic functional principal components. J. R. Stat. Soc. B 77, 319-348. (doi:10.1111/rssb.12076)
    • (2015) J. R. Stat. Soc. B , vol.77 , pp. 319-348
    • Hörmann, S.1    Kidziński, L.2    Hallin, M.3
  • 27
    • 0141941674 scopus 로고    scopus 로고
    • A modified principal component technique based on the LASSO
    • Jolliffe IT, Trendafilov N, Uddin M. 2003 A modified principal component technique based on the LASSO. J. Comput. Graph. Stat. 12, 531-547. (doi:10.1198/1061860032148)
    • (2003) J. Comput. Graph. Stat , vol.12 , pp. 531-547
    • Jolliffe, I.T.1    Trendafilov, N.2    Uddin, M.3
  • 30
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D, Tibshirani R, Hastie T. 2009 A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10, 515-534. (doi:10.1093/biostatistics/kxp008)
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.1    Tibshirani, R.2    Hastie, T.3
  • 31
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • d'Aspremont A., El Ghaoui L, Jordan MI, Lanckriet GRG. 2007 A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49, 434-448. (doi:10.1137/050645506)
    • (2007) SIAM Rev , vol.49 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 32
    • 84922565321 scopus 로고    scopus 로고
    • Sparsistency and agnostic inference in sparse PCA
    • Lei J, Vu VQ 2015 Sparsistency and agnostic inference in sparse PCA. Ann. Stat. 43, 299-322. (doi:10.1214/14-AOS1273)
    • (2015) Ann. Stat , vol.43 , pp. 299-322
    • Lei, J.1    Vu, V.Q.2
  • 33
    • 0000192559 scopus 로고
    • Statistically homogeneous fields on a sphere
    • Obukhov AM. 1947 Statistically homogeneous fields on a sphere. Usp. Mat. Navk. 2, 196-198.
    • (1947) Usp. Mat. Navk , vol.2 , pp. 196-198
    • Obukhov, A.M.1
  • 37
    • 0003531918 scopus 로고
    • Philadelphia, PA: Society for Industrial and Applied Mathematics
    • Huber PJ. 1977 Robust statistical procedures. Philadelphia, PA: Society for Industrial and Applied Mathematics.
    • (1977) Robust Statistical Procedures
    • Huber, P.J.1
  • 39
    • 0000714244 scopus 로고
    • A robust principal component analysis
    • Ruymagaart FH. 1981 A robust principal component analysis. J. Multivariate Anal. 11, 485-497. (doi:10.1016/0047-259X(81)90091-9)
    • (1981) J. Multivariate Anal. , vol.11 , pp. 485-497
    • Ruymagaart, F.H.1
  • 40
    • 84907518855 scopus 로고    scopus 로고
    • Efficient R-estimation of principal and common principal components
    • Hallin M, Paindaveine D, Verdebout T. 2014 Efficient R-estimation of principal and common principal components. J. Am. Stat. Assoc. 109, 1071-1083. (doi:10.1080/01621459.2014.880057)
    • (2014) J. Am. Stat. Assoc , vol.109 , pp. 1071-1083
    • Hallin, M.1    Paindaveine, D.2    Verdebout, T.3
  • 41
    • 84947791529 scopus 로고    scopus 로고
    • 2nd edn. Wiley Series in Probability and Statistics. New York, NY: Wiley
    • Huber PJ, Ronchetti EM 2009 Robust statistics, 2nd edn. Wiley Series in Probability and Statistics. New York, NY: Wiley.
    • (2009) Robust Statistics
    • Huber, P.J.1    Ronchetti, E.M.2
  • 42
    • 0141742284 scopus 로고    scopus 로고
    • A framework for robust subspace learning
    • De la Torre F, Black MJ. 2003 A framework for robust subspace learning. Int. J. Comput. Vis. 54, 117-142. (doi:10.1023/A:1023709501986)
    • (2003) Int. J. Comput. Vis. , vol.54 , pp. 117-142
    • De La Torre, F.1    Black, M.J.2
  • 43
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization
    • Vancouver, BC, Canada, 7-10 December 2009
    • Wright J, Peng Y, Ma Y., Ganesh A, Rao S. 2009 Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization. In Proc. of Neural Information Processing Systems 2009 (NIPS 2009), Vancouver, BC, Canada, 7-10 December 2009. See http://papers.nips.cc/paper/3704-robust-principal-component-analysis-exact-recovery-of-corrupted-low-rank-matrices-via-convex-optimization.pdf.
    • (2009) Proc. Of Neural Information Processing Systems 2009 (NIPS 2009)
    • Wright, J.1    Peng, Y.2    Ma, Y.3    Ganesh, A.4    Rao, S.5
  • 44
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candès E.J., Li X, Ma Y., Wright J. 2011 Robust principal component analysis? J. ACM 58, 11:1-11:37.
    • (2011) J. ACM , vol.58 , pp. 1101-1137
    • Candès, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 45
    • 84919880480 scopus 로고    scopus 로고
    • Robust principal component analysis with complex noise
    • Beijing, China, 21-26 June 2014
    • Zhao Q, Meng D, Xu Z., Zuo W, Zhang L. 2014 Robust principal component analysis with complex noise. In Proc. of the 31st Int. Conf. on Machine Learning, Beijing, China, 21-26 June 2014. See http://jmlr.org/proceedings/papers/v32/zhao14.pdf.
    • (2014) Proc. Of the 31st Int. Conf. on Machine Learning
    • Zhao, Q.1    Meng, D.2    Xu, Z.3    Zuo, W.4    Zhang, L.5
  • 46
    • 84898079839 scopus 로고    scopus 로고
    • Robust PCA via principal component pursuit: A review for a comparative evaluation in video surveillance
    • Bouwmans T, Zahzah E. 2014 Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22-34. (doi:10.1016/j.cviu.2013.11.009)
    • (2014) Comput. Vis. Image Underst , vol.122 , pp. 22-34
    • Bouwmans, T.1    Zahzah, E.2
  • 48
    • 84906487104 scopus 로고    scopus 로고
    • Symbolic data analysis: Another look at the interaction of data mining and statistics
    • Brito P. 2014 Symbolic data analysis: another look at the interaction of data mining and statistics. WIREs Data Mining Knowl. Discov. 4, 281-295. (doi:10.1002/widm.1133)
    • (2014) WIREs Data Mining Knowl. Discov , vol.4 , pp. 281-295
    • Brito, P.1
  • 49
    • 0028408227 scopus 로고
    • Generalized minkowski metrics for mixed feature type data analysis
    • Ichino M, Yaguchi H. 1994 Generalized Minkowski metrics for mixed feature type data analysis. IEEE Trans. Syst. Man Cybern. 24, 698-708. (doi:10.1109/21.286391)
    • (1994) IEEE Trans. Syst. Man Cybern , vol.24 , pp. 698-708
    • Ichino, M.1    Yaguchi, H.2
  • 50
    • 84969837153 scopus 로고    scopus 로고
    • Principal axes analysis of symbolic histogram variables
    • In press
    • Makosso-Kallyth S. In press. Principal axes analysis of symbolic histogram variables. Stat. Anal. Data Mining. (doi:10.1002/sam.11270)
    • Stat. Anal. Data Mining
    • Makosso-Kallyth, S.1
  • 51
    • 62849102881 scopus 로고    scopus 로고
    • Clustering and disjoint principal component analysis
    • Vichi M, Saporta G. 2009 Clustering and disjoint principal component analysis. Comp. Stat. Data Anal. 53, 3194-3208. (doi:10.1016/j.csda.2008.05.028)
    • (2009) Comp. Stat. Data Anal. , vol.53 , pp. 3194-3208
    • Vichi, M.1    Saporta, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.