메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 1216-1226

Robust principal component analysis with complex noise

Author keywords

[No Author keywords available]

Indexed keywords

LEARNING SYSTEMS;

EID: 84919880480     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (30)
  • 3
    • 0037328517 scopus 로고    scopus 로고
    • Lambertian reflectance and linear subspaces
    • Basri, R. and Jacobs, D. W. Lambertian reflectance and linear subspaces. IEEE Transactions on PAMI, 25(2):218-233, 2003.
    • (2003) IEEE Transactions on PAMI , vol.25 , Issue.2 , pp. 218-233
    • Basri, R.1    Jacobs, D.W.2
  • 6
    • 77951528523 scopus 로고    scopus 로고
    • The power of convex relaxation: Near- optimal matrix completion
    • Candes, E. J. and Tao, T. The power of convex relaxation: Near- optimal matrix completion. IEEE Transactions on Information Theory, 56(5):2053-2080, 2010.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.5 , pp. 2053-2080
    • Candes, E.J.1    Tao, T.2
  • 7
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • Candes, E. J., Li, X., Ma, Y., and Wright, J. Robust principal component analysis? Journal of the ACM, 58(3): 1110-1137, 2011.
    • (2011) Journal of the ACM , vol.58 , Issue.3 , pp. 1110-1137
    • Candes, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 9
    • 33749255817 scopus 로고    scopus 로고
    • Tfi-PCA; Rotational invariant Li-norm principal component analysis for robust sub- space factorization
    • Ding, C.; Zhou, D, He, X., and Zha, H. tfi-PCA; Rotational invariant Li-norm principal component analysis for robust sub- space factorization. In ICML, 2006.
    • (2006) ICML
    • Ding, C.1    Zhou, D.2    He, X.3    Zha, H.4
  • 10
    • 80052891985 scopus 로고    scopus 로고
    • Bayesian robust principal component analysis
    • Ding, X., He, L., and Carin, L. Bayesian robust principal component analysis. IEEE Transactions on Image Processing, 20 (12):3419-3430, 2011.
    • (2011) IEEE Transactions on Image Processing , vol.20 , Issue.12 , pp. 3419-3430
    • Ding, X.1    He, L.2    Carin, L.3
  • 11
    • 77955994778 scopus 로고    scopus 로고
    • Efficient computation of robust low-rank matrix approximations in the presence of missing data using the Li norm
    • Eriksson, A. and van den Hengel, A. Efficient computation of robust low-rank matrix approximations in the presence of missing data using the Li norm. In CVPR, 2010.
    • (2010) CVPR
    • Eriksson, A.1    Van Den Hengel, A.2
  • 12
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: Illumination cone models for face recognition under variable lighting and pose
    • Georghiades, A. S., Belhumeur, R N., and Kriegman, D. J. From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on PAMI, 23(6):643-660, 2001.
    • (2001) IEEE Transactions on PAMI , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, R.N.2    Kriegman, D.J.3
  • 13
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran, H. and Rao, J. S. Spike and slab variable selection: Frequentist and Bayesian strategies. Annals of Statistics, 33 (2):730-773, 2005.
    • (2005) Annals of Statistics , vol.33 , Issue.2 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 14
    • 0003946510 scopus 로고    scopus 로고
    • Springer series in statistics. Springer, New York, 2nd edition
    • Jolliffe, I. T. Principal component analysis. Springer series in statistics. Springer, New York, 2nd edition, 2002.
    • (2002) Principal Component Analysis
    • Jolliffe, I.T.1
  • 15
    • 33745179218 scopus 로고    scopus 로고
    • Robust L1 norm factorization in the p- resence of outliers and missing data by alternative convex programming
    • Ke, Q. and Kanade, T. Robust L1 norm factorization in the p- resence of outliers and missing data by alternative convex programming. In CVPR, 2005.
    • (2005) CVPR
    • Ke, Q.1    Kanade, T.2
  • 16
    • 48049103479 scopus 로고    scopus 로고
    • Principal component analysis based on Li-norm maximization
    • Kwak, N. Principal component analysis based on Li-norm maximization. IEEE Transactions on PAMI, 30(9): 1672-1680, 2008.
    • (2008) IEEE Transactions on PAMI , vol.30 , Issue.9 , pp. 1672-1680
    • Kwak, N.1
  • 17
    • 7444243389 scopus 로고    scopus 로고
    • Statistical modeling of complex backgrounds for foreground object detection
    • Li, L., Huang, W., Gu, I., and Tian, Q. Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing, 13(11): 1459-1472, 2004.
    • (2004) IEEE Transactions on Image Processing , vol.13 , Issue.11 , pp. 1459-1472
    • Li, L.1    Huang, W.2    Gu, I.3    Tian, Q.4
  • 20
    • 77956529193 scopus 로고    scopus 로고
    • Robust subspace segmentation by low-rank representation
    • Liu, G., Lin, Z., and Yu, Y. Robust subspace segmentation by low-rank representation. In ICML, 2010.
    • (2010) ICML
    • Liu, G.1    Lin, Z.2    Yu, Y.3
  • 21
    • 0002322469 scopus 로고
    • On a test of whether one of two random variables is stochastically larger than the other
    • Mann, H. B. and Whitney, D. R. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18(1):50-60, 1947.
    • (1947) Annals of Mathematical Statistics , vol.18 , Issue.1 , pp. 50-60
    • Mann, H.B.1    Whitney, D.R.2
  • 22
    • 84898783301 scopus 로고    scopus 로고
    • Robust matrix factorization with unknown noise
    • Meng, D. and De la Torre, F. Robust matrix factorization with unknown noise. In ICCV, 2013.
    • (2013) ICCV
    • Meng, D.1    De La Torre, F.2
  • 23
    • 84893361849 scopus 로고    scopus 로고
    • A cyclic weighted median method for Li low-rank matrix factorization with missing entries
    • Meng, D., Xu, Z., Zhang, L., and Zhao, J. A cyclic weighted median method for Li low-rank matrix factorization with missing entries. In AAAI, 2013.
    • (2013) AAAI
    • Meng, D.1    Xu, Z.2    Zhang, L.3    Zhao, J.4
  • 25
    • 77956007151 scopus 로고    scopus 로고
    • RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images
    • Peng, Y, Ganesh, A., Wright, J., Xu, W and Ma, Y. RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. In CVPR, 2010.
    • (2010) CVPR
    • Peng, Y.1    Ganesh, A.2    Wright, J.3    Xu, W.4    Ma, Y.5
  • 26
    • 78549288866 scopus 로고    scopus 로고
    • Guaranteed minimum- rank solutions of linear matrix equations via nuclear norm min-imization
    • Recht, B., Fazel, M., and Parrilo, P. A. Guaranteed minimum- rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010.
    • (2010) SIAM Review , vol.52 , Issue.3 , pp. 471-501
    • Recht, B.1    Fazel, M.2    Parrilo, P.A.3
  • 27
    • 84898822274 scopus 로고    scopus 로고
    • A probabilistic approach to robust matrix factorization
    • Wang, N., Yao, T., Wang, J., and Yeung, D. A probabilistic approach to robust matrix factorization. In ECCV, 2012.
    • (2012) ECCV
    • Wang, N.1    Yao, T.2    Wang, J.3    Yeung, D.4
  • 28
    • 84863367863 scopus 로고    scopus 로고
    • Robust principal component analysis: Exact recovery of corrupted low- rank matrices by convex optimization
    • Wright, J., Peng, Y., Ma, Y., Ganesh, A., and Rao, S. Robust principal component analysis: Exact recovery of corrupted low- rank matrices by convex optimization. In NIPS, 2009.
    • (2009) NIPS
    • Wright, J.1    Peng, Y.2    Ma, Y.3    Ganesh, A.4    Rao, S.5
  • 30
    • 84866683891 scopus 로고    scopus 로고
    • Practical low-rank matrix approximation under robust Li-norm
    • Zheng, Y., Liu, G., Sugimoto, S., Yan, S., and Okutomi, M. Practical low-rank matrix approximation under robust Li-norm. In CVPR, 2012.
    • (2012) CVPR
    • Zheng, Y.1    Liu, G.2    Sugimoto, S.3    Yan, S.4    Okutomi, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.