메뉴 건너뛰기




Volumn 41, Issue 3, 2013, Pages 1055-1084

Minimax bounds for sparse PCA with noisy high-dimensional data

Author keywords

High dimensional data; Minimax risk; Principal component analysis; Sparsity; Spiked covariance model

Indexed keywords


EID: 84879351019     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/12-AOS1014     Document Type: Article
Times cited : (145)

References (37)
  • 1
    • 69049101180 scopus 로고    scopus 로고
    • High-dimensional analysis of semidefinite relaxations for sparse principal components
    • MR2541450
    • AMINI, A. A. and WAINWRIGHT, M. J. (2009). High-dimensional analysis of semidefinite relaxations for sparse principal components. Ann. Statist. 37 2877-2921. MR2541450
    • (2009) Ann. Statist , vol.37 , pp. 2877-2921
    • Amini, A.A.1    Wainwright, M.J.2
  • 2
    • 0001699986 scopus 로고
    • Asymptotic theory for principal component analysis
    • MR0145620
    • ANDERSON, T. W. (1963). Asymptotic theory for principal component analysis. Ann. Math. Statist. 34 122-148. MR0145620
    • (1963) Ann. Math. Statist , vol.34 , pp. 122-148
    • Anderson, T.W.1
  • 3
    • 33646507506 scopus 로고    scopus 로고
    • Eigenvalues of large sample covariance matrices of spiked population models
    • MR2279680
    • BAIK, J. and SILVERSTEIN, J. W. (2006). Eigenvalues of large sample covariance matrices of spiked population models. J. Multivariate Anal. 97 1382-1408. MR2279680
    • (2006) J. Multivariate Anal , vol.97 , pp. 1382-1408
    • Baik, J.1    Silverstein, J.W.2
  • 4
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • MR2485008
    • BICKEL, P. J. and LEVINA, E. (2008a). Covariance regularization by thresholding. Ann. Statist. 36 2577-2604. MR2485008
    • (2008) Ann. Statist , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 5
    • 41549106844 scopus 로고    scopus 로고
    • Regularized estimation of large covariance matrices
    • MR2387969
    • BICKEL, P. J. and LEVINA, E. (2008b). Regularized estimation of large covariance matrices. Ann. Statist. 36 199-227. MR2387969
    • (2008) Ann. Statist , vol.36 , pp. 199-227
    • Bickel, P.J.1    Levina, E.2
  • 6
    • 0037644082 scopus 로고    scopus 로고
    • A new look at an old result: Fano's lemma
    • Univ. Paris 6
    • BIRGÉ, L. (2001). A new look at an old result: Fano's lemma. Technical report, Univ. Paris 6.
    • (2001) Technical Report
    • Birgé, L.1
  • 7
    • 79960133776 scopus 로고    scopus 로고
    • Adaptive thresholding for sparse covariance matrix estimation
    • MR2847949
    • CAI, T. and LIU, W. (2011). Adaptive thresholding for sparse covariance matrix estimation. J. Amer. Statist. Assoc. 106 672-684. MR2847949
    • (2011) J. Amer. Statist. Assoc. , vol.106 , pp. 672-684
    • Cai, T.1    Liu, W.2
  • 8
    • 84877636400 scopus 로고    scopus 로고
    • Sparse PCA: Optimal rates and adaptive estimation
    • Available at arXiv:1211.1309
    • CAI, T. T., MA, Z. and WU, Y. (2012). Sparse PCA: Optimal rates and adaptive estimation. Technical report. Available at arXiv:1211.1309.
    • (2012) Technical Report.
    • Cai, T.T.1    Ma, Z.2    Wu, Y.3
  • 9
    • 77955132618 scopus 로고    scopus 로고
    • Optimal rates of convergence for covariance matrix estimation
    • MR2676885
    • CAI, T. T., ZHANG, C.-H. and ZHOU, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118-2144. MR2676885
    • (2010) Ann. Statist , vol.38 , pp. 2118-2144
    • Cai, T.T.1    Zhang, C.-H.2    Zhou, H.H.3
  • 10
    • 84861177056 scopus 로고    scopus 로고
    • Minimax esrimation of large covariance matrices under l1 norm
    • CAI, T. T. and ZHOU, H. H. (2012). Minimax esrimation of large covariance matrices under l1 norm. Statist. Sinica 22 1319-1378.
    • (2012) Statist. Sinica , vol.22 , pp. 1319-1378
    • Cai, T.T.1    Zhou, H.H.2
  • 11
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • (electronic). MR2353806
    • D'ASPREMONT, A., EL GHAOUI, L., JORDAN, M. I. and LANCKRIET, G. R. G. (2007). A direct formulation for sparse PCA using semidefinite programming. SIAM Rev. 49 434-448 (electronic). MR2353806
    • (2007) SIAM Rev , vol.49 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.G.4
  • 12
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory random matrices and banach spaces
    • (W. B. Johnson and J. Lindenstrauss, eds.) North-Holland Amsterdam MR1863696
    • DAVIDSON, K. R. and SZAREK, S. J. (2001). Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol. I (W. B. Johnson and J. Lindenstrauss, eds.) 317-366. North-Holland, Amsterdam. MR1863696
    • (2001) Handbook of the Geometry of Banach Spaces , vol.1 , pp. 317-366
    • Davidson, K.R.1    Szarek, S.J.2
  • 13
    • 62349123505 scopus 로고    scopus 로고
    • Operator norm consistent estimation of large-dimensional sparse covariance matrices
    • MR2485011
    • EL KAROUI, N. (2008). Operator norm consistent estimation of large-dimensional sparse covariance matrices. Ann. Statist. 36 2717-2756. MR2485011
    • (2008) Ann. Statist , vol.36 , pp. 2717-2756
    • El Karoui, N.1
  • 14
    • 0346810958 scopus 로고    scopus 로고
    • Chi-square oracle inequalities
    • (Leiden) (M. de Gunst, C. Klaassen and A. van der Waart, eds.). Institute of Mathematical Statistics Lecture Notes - Monograph Series. IMS, Beachwood, OH. MR1836572
    • JOHNSTONE, I. M. (2001). Chi-square oracle inequalities. In State of the Art in Probability and Statistics (Leiden, 1999) (M. de Gunst, C. Klaassen and A. van der Waart, eds.). Institute of Mathematical Statistics Lecture Notes - Monograph Series 36 399-418. IMS, Beachwood, OH. MR1836572
    • (1999) State of the Art in Probability and Statistics , vol.36 , pp. 399-418
    • Johnstone, I.M.1
  • 15
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • MR2751448
    • JOHNSTONE, I. M. and LU, A. Y. (2009). On consistency and sparsity for principal components analysis in high dimensions. J. Amer. Statist. Assoc. 104 682-693. MR2751448
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.Y.2
  • 18
    • 50249159453 scopus 로고    scopus 로고
    • Determining the number of components in a factor model from limited noisy data
    • KRITCHMAN, S. andNADLER, B. (2008). Determining the number of components in a factor model from limited noisy data. Chemometrics and Intelligent Laboratory Systems 94 19-32.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , pp. 19-32
    • Kritchman, S.1    Nadler, B.2
  • 20
    • 84877758200 scopus 로고    scopus 로고
    • Sparse principal component analysis and iterative thresholding
    • Dept. Statistics, The Wharton School, Univ. Pennsylvania, Philadelphia, PA
    • MA, Z. (2011). Sparse principal component analysis and iterative thresholding. Technical report, Dept. Statistics, The Wharton School, Univ. Pennsylvania, Philadelphia, PA.
    • (2011) Technical Report
    • Ma, Z.1
  • 22
    • 62349121558 scopus 로고    scopus 로고
    • Finite sample approximation results for principal component analysis: A matrix perturbation approach
    • MR2485013
    • NADLER, B. (2008). Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann. Statist. 36 2791-2817. MR2485013
    • (2008) Ann. Statist , vol.36 , pp. 2791-2817
    • Nadler, B.1
  • 23
    • 66549085511 scopus 로고    scopus 로고
    • On consistency and sparsity for principal component analysis in high dimensions
    • Discussion of MR2751449
    • NADLER, B. (2009). Discussion of "On consistency and sparsity for principal component analysis in high dimensions." J. Amer. Statist. Assoc. 104 694-697. MR2751449
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 694-697
    • Nadler, B.1
  • 24
    • 34250714341 scopus 로고    scopus 로고
    • Determining the number of factors from empirical distribution of eigenvalues
    • Columbia Univ
    • ONATSKI, A. (2006). Determining the number of factors from empirical distribution of eigenvalues. Technical report, Columbia Univ.
    • (2006) Technical Report
    • Onatski, A.1
  • 26
    • 38549175880 scopus 로고    scopus 로고
    • Asymptotics of sample eigenstructure for a large dimensional spiked covariance model
    • MR2399865
    • PAUL, D. (2007). Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statist. Sinica 17 1617-1642. MR2399865
    • (2007) Statist. Sinica , vol.17 , pp. 1617-1642
    • Paul, D.1
  • 27
    • 69049119812 scopus 로고    scopus 로고
    • Augmented sparse principal component analysis for high dimensional data
    • Univ. California, Davis. Available at arXiv: 1202.1242
    • PAUL, D. and JOHNSTONE, I. M. (2007). Augmented sparse principal component analysis for high dimensional data. Technical report, Univ. California, Davis. Available at arXiv:1202.1242.
    • (2007) Technical Report
    • Paul, D.1    Johnstone, I.M.2
  • 28
    • 70350337963 scopus 로고    scopus 로고
    • Generalized thresholding of large covariance matrices
    • MR2504372
    • ROTHMAN, A. J., LEVINA, E. and ZHU, J. (2009). Generalized thresholding of large covariance matrices. J. Amer. Statist. Assoc. 104 177-186. MR2504372
    • (2009) J. Amer. Statist. Assoc , vol.104 , pp. 177-186
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 29
    • 43049086717 scopus 로고    scopus 로고
    • Sparse principal component analysis via regularized low rank matrix approximation
    • MR2419336
    • SHEN, H. and HUANG, J. Z. (2008). Sparse principal component analysis via regularized low rank matrix approximation. J. Multivariate Anal. 99 1015-1034. MR2419336
    • (2008) J. Multivariate Anal , vol.99 , pp. 1015-1034
    • Shen, H.1    Huang, J.Z.2
  • 30
    • 84879127393 scopus 로고    scopus 로고
    • Consistency of sparse PCA in high dimension, low sample size contexts
    • Available at
    • SHEN, D., SHEN, H. and MARRON, J. S. (2011). Consistency of sparse PCA in high dimension, low sample size contexts. Technical report. Available at http://arxiv.org/pdf/1104.4289v1.pdf.
    • (2011) Technical Report
    • Shen, D.1    Shen, H.2    Marron, J.S.3
  • 33
    • 84877738589 scopus 로고    scopus 로고
    • Minimax rates of estimation for sparse PCA in high dimensions
    • Available at
    • VU, V. Q. and LEI, J. (2012). Minimax rates of estimation for sparse PCA in high dimensions. Technical report. Available at http://arxiv.org/pdf/1202. 0786.pdf.
    • (2012) Technical Report
    • Vu, V.Q.1    Lei, J.2
  • 34
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • WITTEN, D.M., TIBSHIRANI, R. and HASTIE, T. (2009). A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10 515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, T.3
  • 35
    • 0033233737 scopus 로고    scopus 로고
    • Information-theoretic determination of minimax rates of convergence
    • MR1742500
    • YANG, Y. and BARRON, A. (1999). Information-theoretic determination of minimax rates of convergence. Ann. Statist. 27 1564-1599. MR1742500
    • (1999) Ann. Statist , vol.27 , pp. 1564-1599
    • Yang, Y.1    Barron, A.2
  • 36
    • 0004025266 scopus 로고    scopus 로고
    • Springer, New York. MR1707318
    • ZONG, C. (1999). Sphere Packings. Springer, New York. MR1707318
    • (1999) Sphere Packings
    • Zong, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.