-
1
-
-
79953897708
-
A relevance feedback method based on genetic programming for classification of remote sensing images
-
Dos Santos J., Ferreira C.D., Torres R.d.S., Gonçalves M.A., Lamparelli R.A. A relevance feedback method based on genetic programming for classification of remote sensing images. Inf. Sci. 2011, 181:2671-2684.
-
(2011)
Inf. Sci.
, vol.181
, pp. 2671-2684
-
-
Dos Santos, J.1
Ferreira, C.D.2
Torres, R.3
Gonçalves, M.A.4
Lamparelli, R.A.5
-
2
-
-
83655163794
-
Coevolutionary learning of neural network ensemble for complex classification tasks
-
Tian J., Li M., Chen F., Kou J. Coevolutionary learning of neural network ensemble for complex classification tasks. Pattern Recognit. 2012, 45:1373-1385.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 1373-1385
-
-
Tian, J.1
Li, M.2
Chen, F.3
Kou, J.4
-
3
-
-
58249085362
-
Designing multiple biometric systems: Measures of ensemble effectiveness
-
Tronci R., Giacinto G., Roli F. Designing multiple biometric systems: Measures of ensemble effectiveness. Eng. Appl. Artif. Intell. 2009, 22:66-78.
-
(2009)
Eng. Appl. Artif. Intell.
, vol.22
, pp. 66-78
-
-
Tronci, R.1
Giacinto, G.2
Roli, F.3
-
4
-
-
84860267020
-
Multiple classifier system for remote sensing image classification: a review
-
(Basel, Switzerland)
-
Du P., Xia J., Zhang W., Tan K., Liu Y., Liu S. Multiple classifier system for remote sensing image classification: a review. Sensors 2012, 12:4764-4792. (Basel, Switzerland).
-
(2012)
Sensors
, vol.12
, pp. 4764-4792
-
-
Du, P.1
Xia, J.2
Zhang, W.3
Tan, K.4
Liu, Y.5
Liu, S.6
-
5
-
-
84862515469
-
A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches
-
Galar M., Fernández A., Barrenechea E., Bustince H., Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Compon. Packag. Manuf. Technol. Part C 2012, 42:463-484.
-
(2012)
IEEE Trans. Compon. Packag. Manuf. Technol. Part C
, vol.42
, pp. 463-484
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
6
-
-
70350294122
-
Ensemble classification algorithm for hyperspectral remote sensing data
-
Chi M., Kun Q., Benediktsson J.A., Feng R. Ensemble classification algorithm for hyperspectral remote sensing data. IEEE Geosci. Remote Sens. Lett. 2009, 6:762-766.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, pp. 762-766
-
-
Chi, M.1
Kun, Q.2
Benediktsson, J.A.3
Feng, R.4
-
7
-
-
77958068953
-
-
Geoinformatics, 2010 18th International Conference on, (IEEE 2010)
-
X. Pan, S. Zhang, Ensemble remote sensing classifier based on rough set theory and genetic algorithm, in: Geoinformatics, 2010 18th International Conference on, (IEEE 2010), pp. 1-5.
-
Ensemble remote sensing classifier based on rough set theory and genetic algorithm
, pp. 1-5
-
-
Pan, X.1
Zhang, S.2
-
8
-
-
79551523991
-
Greedy optimization classifiers ensemble based on diversity
-
Mao S., Jiao L., Xiong L., Gou S. Greedy optimization classifiers ensemble based on diversity. Pattern Recognit. 2011, 44:1245-1261.
-
(2011)
Pattern Recognit.
, vol.44
, pp. 1245-1261
-
-
Mao, S.1
Jiao, L.2
Xiong, L.3
Gou, S.4
-
9
-
-
84922190319
-
A weighted voting framework for classifiers ensembles
-
Kuncheva L.I., Rodríguez J.J. A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 2012, 1-17.
-
(2012)
Knowl. Inf. Syst.
, pp. 1-17
-
-
Kuncheva, L.I.1
Rodríguez, J.J.2
-
10
-
-
70349327709
-
When semi-supervised learning meets ensemble learning
-
Springer
-
Zhou Z.-H. When semi-supervised learning meets ensemble learning. Multiple Classifier Syst. 2009, 529-538. Springer.
-
(2009)
Multiple Classifier Syst.
, pp. 529-538
-
-
Zhou, Z.-H.1
-
11
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51:181-207.
-
(2003)
Mach. Learn.
, vol.51
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
12
-
-
84862826692
-
Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction
-
Kim M.-J., Kang D.-K. Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Syst. Appl. 2012, 39:9308-9314.
-
(2012)
Expert Syst. Appl.
, vol.39
, pp. 9308-9314
-
-
Kim, M.-J.1
Kang, D.-K.2
-
13
-
-
67349098005
-
Supervised projection approach for boosting classifiers
-
García-Pedrajas N. Supervised projection approach for boosting classifiers. Pattern Recognit. 2009, 42:1742-1760.
-
(2009)
Pattern Recognit.
, vol.42
, pp. 1742-1760
-
-
García-Pedrajas, N.1
-
15
-
-
79951751034
-
-
Data Mining (ICDM), IEEE 10th International Conference on, (IEEE2010)
-
M.-L. Zhang, Z.-H. Zhou, Exploiting unlabeled data to enhance ensemble diversity, in: Data Mining (ICDM), IEEE 10th International Conference on, (IEEE2010), 2010 pp. 619-628.
-
(2010)
Exploiting unlabeled data to enhance ensemble diversity
, pp. 619-628
-
-
Zhang, M.-L.1
Zhou, Z.-H.2
-
16
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
17
-
-
84870974763
-
Online non-negative convolutive pattern learning for speech signals
-
Wang D., Vipperla R., Evans N., Zheng T.F. Online non-negative convolutive pattern learning for speech signals. IEEE Trans. Signal Process. 2013, 61:44-56.
-
(2013)
IEEE Trans. Signal Process.
, vol.61
, pp. 44-56
-
-
Wang, D.1
Vipperla, R.2
Evans, N.3
Zheng, T.F.4
-
18
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
-
(2006)
Neurocomputing
, vol.70
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
19
-
-
84874221132
-
Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
-
Lian C., Zeng Z., Yao W., Tang H. Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine. Nat. Hazard. 2013, 66:759-771.
-
(2013)
Nat. Hazard.
, vol.66
, pp. 759-771
-
-
Lian, C.1
Zeng, Z.2
Yao, W.3
Tang, H.4
-
20
-
-
84870252407
-
Evolutionary extreme learning machine ensembles with size control
-
Wang D., Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing 2013, 102:98-110.
-
(2013)
Neurocomputing
, vol.102
, pp. 98-110
-
-
Wang, D.1
Alhamdoosh, M.2
-
21
-
-
82655173888
-
Remote sensing image classification based on neural network ensemble algorithm
-
Han M., Zhu X., Yao W. Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing 2012, 78:133-138.
-
(2012)
Neurocomputing
, vol.78
, pp. 133-138
-
-
Han, M.1
Zhu, X.2
Yao, W.3
-
22
-
-
15744394119
-
A neural network model and its application, systems, man and cybernetics
-
Liu M., Zhang S., Yan G., Wang S. A neural network model and its application, systems, man and cybernetics. in: 2004 IEEE International Conference on 2004, 6:5864-5869.
-
(2004)
in: 2004 IEEE International Conference on
, vol.6
, pp. 5864-5869
-
-
Liu, M.1
Zhang, S.2
Yan, G.3
Wang, S.4
|