메뉴 건너뛰기




Volumn , Issue Part A, 2015, Pages 65-70

Ensemble of extreme learning machine for remote sensing image classification

Author keywords

Ensemble learning; Extreme learning machine (ELM); Feature extraction; Nonnegative matrix factorization (NMF); Remote sensing classification

Indexed keywords

EXTRACTION; FACTORIZATION; FEATURE EXTRACTION; IMAGE CLASSIFICATION; KNOWLEDGE ACQUISITION; MACHINE LEARNING; MATRIX ALGEBRA; SAMPLING;

EID: 84922189584     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.09.070     Document Type: Article
Times cited : (77)

References (24)
  • 1
    • 79953897708 scopus 로고    scopus 로고
    • A relevance feedback method based on genetic programming for classification of remote sensing images
    • Dos Santos J., Ferreira C.D., Torres R.d.S., Gonçalves M.A., Lamparelli R.A. A relevance feedback method based on genetic programming for classification of remote sensing images. Inf. Sci. 2011, 181:2671-2684.
    • (2011) Inf. Sci. , vol.181 , pp. 2671-2684
    • Dos Santos, J.1    Ferreira, C.D.2    Torres, R.3    Gonçalves, M.A.4    Lamparelli, R.A.5
  • 2
    • 83655163794 scopus 로고    scopus 로고
    • Coevolutionary learning of neural network ensemble for complex classification tasks
    • Tian J., Li M., Chen F., Kou J. Coevolutionary learning of neural network ensemble for complex classification tasks. Pattern Recognit. 2012, 45:1373-1385.
    • (2012) Pattern Recognit. , vol.45 , pp. 1373-1385
    • Tian, J.1    Li, M.2    Chen, F.3    Kou, J.4
  • 3
    • 58249085362 scopus 로고    scopus 로고
    • Designing multiple biometric systems: Measures of ensemble effectiveness
    • Tronci R., Giacinto G., Roli F. Designing multiple biometric systems: Measures of ensemble effectiveness. Eng. Appl. Artif. Intell. 2009, 22:66-78.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 66-78
    • Tronci, R.1    Giacinto, G.2    Roli, F.3
  • 4
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • (Basel, Switzerland)
    • Du P., Xia J., Zhang W., Tan K., Liu Y., Liu S. Multiple classifier system for remote sensing image classification: a review. Sensors 2012, 12:4764-4792. (Basel, Switzerland).
    • (2012) Sensors , vol.12 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 8
    • 79551523991 scopus 로고    scopus 로고
    • Greedy optimization classifiers ensemble based on diversity
    • Mao S., Jiao L., Xiong L., Gou S. Greedy optimization classifiers ensemble based on diversity. Pattern Recognit. 2011, 44:1245-1261.
    • (2011) Pattern Recognit. , vol.44 , pp. 1245-1261
    • Mao, S.1    Jiao, L.2    Xiong, L.3    Gou, S.4
  • 9
    • 84922190319 scopus 로고    scopus 로고
    • A weighted voting framework for classifiers ensembles
    • Kuncheva L.I., Rodríguez J.J. A weighted voting framework for classifiers ensembles. Knowl. Inf. Syst. 2012, 1-17.
    • (2012) Knowl. Inf. Syst. , pp. 1-17
    • Kuncheva, L.I.1    Rodríguez, J.J.2
  • 10
    • 70349327709 scopus 로고    scopus 로고
    • When semi-supervised learning meets ensemble learning
    • Springer
    • Zhou Z.-H. When semi-supervised learning meets ensemble learning. Multiple Classifier Syst. 2009, 529-538. Springer.
    • (2009) Multiple Classifier Syst. , pp. 529-538
    • Zhou, Z.-H.1
  • 11
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51:181-207.
    • (2003) Mach. Learn. , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 12
    • 84862826692 scopus 로고    scopus 로고
    • Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction
    • Kim M.-J., Kang D.-K. Classifiers selection in ensembles using genetic algorithms for bankruptcy prediction. Expert Syst. Appl. 2012, 39:9308-9314.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 9308-9314
    • Kim, M.-J.1    Kang, D.-K.2
  • 13
    • 67349098005 scopus 로고    scopus 로고
    • Supervised projection approach for boosting classifiers
    • García-Pedrajas N. Supervised projection approach for boosting classifiers. Pattern Recognit. 2009, 42:1742-1760.
    • (2009) Pattern Recognit. , vol.42 , pp. 1742-1760
    • García-Pedrajas, N.1
  • 16
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 17
  • 18
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 19
    • 84874221132 scopus 로고    scopus 로고
    • Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine
    • Lian C., Zeng Z., Yao W., Tang H. Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine. Nat. Hazard. 2013, 66:759-771.
    • (2013) Nat. Hazard. , vol.66 , pp. 759-771
    • Lian, C.1    Zeng, Z.2    Yao, W.3    Tang, H.4
  • 20
    • 84870252407 scopus 로고    scopus 로고
    • Evolutionary extreme learning machine ensembles with size control
    • Wang D., Alhamdoosh M. Evolutionary extreme learning machine ensembles with size control. Neurocomputing 2013, 102:98-110.
    • (2013) Neurocomputing , vol.102 , pp. 98-110
    • Wang, D.1    Alhamdoosh, M.2
  • 21
    • 82655173888 scopus 로고    scopus 로고
    • Remote sensing image classification based on neural network ensemble algorithm
    • Han M., Zhu X., Yao W. Remote sensing image classification based on neural network ensemble algorithm. Neurocomputing 2012, 78:133-138.
    • (2012) Neurocomputing , vol.78 , pp. 133-138
    • Han, M.1    Zhu, X.2    Yao, W.3
  • 22


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.