메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 299-307

SW-ELM: A summation wavelet extreme learning machine algorithm with a priori parameter initialization

Author keywords

Activation functions; Extreme learning machine; Parameters initialization; Prediction accuracy; Wavelet neural network

Indexed keywords

ACTIVATION FUNCTIONS; EXTREME LEARNING MACHINE; PARAMETERS INITIALIZATION; PREDICTION ACCURACY; WAVELET NEURAL NETWORKS;

EID: 84885695058     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.07.021     Document Type: Article
Times cited : (73)

References (32)
  • 1
    • 0036555952 scopus 로고    scopus 로고
    • Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks
    • Daqi G., Genxing Y. Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks. Pattern Recognition 2003, 36(4):869-878.
    • (2003) Pattern Recognition , vol.36 , Issue.4 , pp. 869-878
    • Daqi, G.1    Genxing, Y.2
  • 2
    • 77649238806 scopus 로고    scopus 로고
    • Composite function wavelet neural networks with extreme learning machine
    • Cao J., Lin Z., Huang G.-B. Composite function wavelet neural networks with extreme learning machine. Neurocomputing 2010, 73(7-9):1405-1416.
    • (2010) Neurocomputing , vol.73 , Issue.7-9 , pp. 1405-1416
    • Cao, J.1    Lin, Z.2    Huang, G.-B.3
  • 3
    • 50149114113 scopus 로고    scopus 로고
    • Artificial wavelet neural network and its application in neuro-fuzzy models
    • Banakar A., Azeem M.F. Artificial wavelet neural network and its application in neuro-fuzzy models. Applied Soft Computing 2008, 8(4):1463-1485.
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1463-1485
    • Banakar, A.1    Azeem, M.F.2
  • 4
    • 84866915937 scopus 로고    scopus 로고
    • Multi-modal sensing and correlation modelling for condition-based monitoring in milling machine
    • Li X., Zeng H., Zhou J.H., Huang S., Thoe T.B., Shaw K.C., Lim B.S. Multi-modal sensing and correlation modelling for condition-based monitoring in milling machine. SIMTech Technical Reports 2007, 8(1):50-56.
    • (2007) SIMTech Technical Reports , vol.8 , Issue.1 , pp. 50-56
    • Li, X.1    Zeng, H.2    Zhou, J.H.3    Huang, S.4    Thoe, T.B.5    Shaw, K.C.6    Lim, B.S.7
  • 5
    • 0033325747 scopus 로고    scopus 로고
    • A wavelet neural network for the approximation of nonlinear multivariable function, in: Proceedings of 1999 IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC'99
    • W. Ting, Y. Sugai, A wavelet neural network for the approximation of nonlinear multivariable function, in: Proceedings of 1999 IEEE International Conference on Systems, Man, and Cybernetics, IEEE SMC'99, vol. 3, 1999, pp. 378-383.
    • (1999) , vol.3 , pp. 378-383
    • Ting, W.1    Sugai, Y.2
  • 6
    • 0028754409 scopus 로고
    • Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets and their applications, in: Proceedings of 1994 IEEE World Congress on Computational Intelligence
    • T. Yamakawa, E. Uchino, T. Samatsu, Wavelet neural networks employing over-complete number of compactly supported non-orthogonal wavelets and their applications, in: Proceedings of 1994 IEEE World Congress on Computational Intelligence, vol. 3, 1994, pp. 1391-1396.
    • (1994) , vol.3 , pp. 1391-1396
    • Yamakawa, T.1    Uchino, E.2    Samatsu, T.3
  • 7
    • 84856214465 scopus 로고    scopus 로고
    • Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling
    • Pourtaghi A., Lotfollahi-Yaghin M. Wavenet ability assessment in comparison to ANN for predicting the maximum surface settlement caused by tunneling. Tunnelling and Underground Space Technology 2012, 28:257-271.
    • (2012) Tunnelling and Underground Space Technology , vol.28 , pp. 257-271
    • Pourtaghi, A.1    Lotfollahi-Yaghin, M.2
  • 9
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks IJCNN, Budapest, Hungary
    • G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: a new learning scheme of feedforward neural networks, in: Proceedings of the International Joint Conference on Neural Networks IJCNN, Budapest, Hungary, 2004.
    • (2004)
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 10
    • 39449107168 scopus 로고    scopus 로고
    • Prediction of melting points of organic compounds using extreme learning machines
    • Bhat A.U., Merchant S.S., Bhagwat S.S. Prediction of melting points of organic compounds using extreme learning machines. Industrial & Engineering Chemistry Research 2008, 47(3):920-925.
    • (2008) Industrial & Engineering Chemistry Research , vol.47 , Issue.3 , pp. 920-925
    • Bhat, A.U.1    Merchant, S.S.2    Bhagwat, S.S.3
  • 11
    • 79952817023 scopus 로고    scopus 로고
    • Comparison of new activation functions in neural network for forecasting financial time series
    • da G., Gomes S., Ludermir T., Lima L. Comparison of new activation functions in neural network for forecasting financial time series. Neural Computing and Applications 2011, 20(3):417-439.
    • (2011) Neural Computing and Applications , vol.20 , Issue.3 , pp. 417-439
    • da, G.1    Gomes, S.2    Ludermir, T.3    Lima, L.4
  • 14
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proceedings of the International Joint Conference on Neural Networks IJCNN, San Diego, CA, USA
    • D. Nguyen, B. Widrow, Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights, in: Proceedings of the International Joint Conference on Neural Networks IJCNN, San Diego, CA, USA, 1990.
    • (1990)
    • Nguyen, D.1    Widrow, B.2
  • 15
    • 0034284052 scopus 로고    scopus 로고
    • Initialization by selection for wavelet network training
    • Oussar Y., Dreyfus G. Initialization by selection for wavelet network training. Neurocomputing 2000, 34(1-4):131-143.
    • (2000) Neurocomputing , vol.34 , Issue.1-4 , pp. 131-143
    • Oussar, Y.1    Dreyfus, G.2
  • 16
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 17
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70:489-501.
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 21
    • 80051669013 scopus 로고    scopus 로고
    • A study on effectiveness of extreme learning machine
    • Wang Y., Cao F., Yuan Y. A study on effectiveness of extreme learning machine. Neurocomputing 2011, 74(16):2483-2490.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2483-2490
    • Wang, Y.1    Cao, F.2    Yuan, Y.3
  • 22
    • 77949614014 scopus 로고    scopus 로고
    • On improving the conditioning of extreme learning machine: a linear case, in: Proceedings of 7th International Conference on Information, Communications and Signal processing, ICICS'09, Piscataway, NJ, USA
    • G. Zhao, Z. Shen, C. Miao, Z. Man, On improving the conditioning of extreme learning machine: a linear case, in: Proceedings of 7th International Conference on Information, Communications and Signal processing, ICICS'09, Piscataway, NJ, USA, 2009.
    • (2009)
    • Zhao, G.1    Shen, Z.2    Miao, C.3    Man, Z.4
  • 24
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 25
    • 84885744991 scopus 로고    scopus 로고
    • Algorithms for Initialization of Neural Network Weights
    • A. Pavelka, A. Prochazka, Algorithms for Initialization of Neural Network Weights, 2004, http://www.dsp.vscht.cz/konference_matlab/matlab04/pavelka.pdf.
    • (2004)
    • Pavelka, A.1    Prochazka, A.2
  • 27
    • 84868230890 scopus 로고    scopus 로고
    • Genetic algorithms for feature subset selection in equipment fault diagnostics
    • Zhou J., Li X., Gan O.P., Han S., Ng W.K. Genetic algorithms for feature subset selection in equipment fault diagnostics. Engineering Asset Management 2006, 10:1104-1113.
    • (2006) Engineering Asset Management , vol.10 , pp. 1104-1113
    • Zhou, J.1    Li, X.2    Gan, O.P.3    Han, S.4    Ng, W.K.5
  • 28
    • 84885769697 scopus 로고    scopus 로고
    • Industrial Dryer.
    • Industrial Dryer,. http://www.ftp://ftp.esat.kuleuven.ac.be/sista/data/process_industry.
  • 29
    • 84885705287 scopus 로고    scopus 로고
    • Hair Dryer.
    • Hair Dryer,http://www.ftp://ftp.esat.kuleuven.ac.be/sista/data/mechanical.
  • 30
    • 84885826731 scopus 로고    scopus 로고
    • NN3 Forecasting Competition.
    • NN3 Forecasting Competition, http://www.neural-forecasting-competition.com/nn3/.
  • 31
    • 58449121109 scopus 로고    scopus 로고
    • A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Health Management, 2008, IEEE, 2008, pp. 1-9.
    • A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Health Management, 2008, IEEE, 2008, pp. 1-9.
  • 32
    • 84870563115 scopus 로고    scopus 로고
    • Connexionist-systems-based long term prediction approaches for prognostics
    • Gouriveau R., Zerhouni N. Connexionist-systems-based long term prediction approaches for prognostics. IEEE Transactions on Reliability 2012, 61(4):909-920.
    • (2012) IEEE Transactions on Reliability , vol.61 , Issue.4 , pp. 909-920
    • Gouriveau, R.1    Zerhouni, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.