메뉴 건너뛰기




Volumn 44, Issue 7, 2014, Pages 851-862

Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine

Author keywords

Health monitoring; Mean entropy; Prognostics; Relevance vector machine (RVM); Remaining life; State of health (SOH)

Indexed keywords

ENTROPY; FORECASTING; LITHIUM-ION BATTERIES; PREDICTIVE ANALYTICS; TIME SERIES;

EID: 84903145771     PISSN: 21682216     EISSN: 21682232     Source Type: Journal    
DOI: 10.1109/TSMC.2013.2296276     Document Type: Article
Times cited : (167)

References (50)
  • 1
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • Feb.
    • B. Saha, K. Goebel, S. Poll, and J. Christophersen, "Prognostics methods for battery health monitoring using a Bayesian framework," IEEE Trans. Instrum. Meas., vol. 58, no. 2, pp. 291-296, Feb. 2009.
    • (2009) IEEE Trans. Instrum. Meas. , vol.58 , Issue.2 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 2
    • 84879347106 scopus 로고    scopus 로고
    • Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques
    • J. D. Kozlowski, "Electrochemical cell prognostics using online impedance measurements and model-based data fusion techniques," in Proc. IEEE Aerosp. Conf., vol. 7, 2003, pp. 3257-3270.
    • (2003) Proc. IEEE Aerosp. Conf. , vol.7 , pp. 3257-3270
    • Kozlowski, J.D.1
  • 3
    • 76849109288 scopus 로고    scopus 로고
    • A prognostics and health management roadmap for information and electronics-rich system
    • Mar.
    • M. G. Pecht, "A prognostics and health management roadmap for information and electronics-rich system," Microelectron. Rel., vol. 50, no. 3, pp. 317-323, Mar. 2010.
    • (2010) Microelectron. Rel. , vol.50 , Issue.3 , pp. 317-323
    • Pecht, M.G.1
  • 4
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • Aug.
    • J. L. Zhang and J. Lee, "A review on prognostics and health monitoring of Li-ion battery," J. Power Sources, vol. 196, no. 15, pp. 6007-6014, Aug. 2011.
    • (2011) J. Power Sources , vol.196 , Issue.15 , pp. 6007-6014
    • Zhang, J.L.1    Lee, J.2
  • 5
    • 21244441087 scopus 로고    scopus 로고
    • Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles
    • DOI 10.1109/TVT.2004.842461
    • B. S. Bhangu, P. Bentley, D. A. Stone, and C. M. Bingham, "Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid electric vehicles," IEEE Trans. Veh. Technol., vol. 54, no. 3, pp. 783-794, May 2005. (Pubitemid 40889755)
    • (2005) IEEE Transactions on Vehicular Technology , vol.54 , Issue.3 , pp. 783-794
    • Bhangu, B.S.1    Bentley, P.2    Stone, D.A.3    Bingham, C.M.4
  • 6
    • 80052196411 scopus 로고    scopus 로고
    • Modeling Li-ion battery capacity depletion in a particle filtering framework
    • B. Saha and K. Goebel, "Modeling Li-ion battery capacity depletion in a particle filtering framework," in Proc. IEEE Int. Conf. Prognostics Health Manag., 2009, pp. 1-10.
    • (2009) Proc. IEEE Int. Conf. Prognostics Health Manag. , pp. 1-10
    • Saha, B.1    Goebel, K.2
  • 7
    • 67649289964 scopus 로고    scopus 로고
    • Dual features functional support vector machines for fault detection of rechargeable batteries
    • Jul.
    • J. I. Park, S. H. Baek, M. K. Jeong, and S. J. Bae, "Dual features functional support vector machines for fault detection of rechargeable batteries," IEEE Trans. Syst., Man, Cybern. C, Appl., Rev., vol. 39, no. 4, pp. 480-485, Jul. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. C, Appl., Rev. , vol.39 , Issue.4 , pp. 480-485
    • Park, J.I.1    Baek, S.H.2    Jeong, M.K.3    Bae, S.J.4
  • 8
    • 63049095648 scopus 로고    scopus 로고
    • Adaptive sensor fault detection and identification using particle filter algorithms
    • Mar.
    • T. Wei, Y. F. Huang, and C. L. P. Chen, "Adaptive sensor fault detection and identification using particle filter algorithms," IEEE Trans. Syst., Man, Cybern. C, Appl., Rev., vol. 39, no. 2, pp. 201-213, Mar. 2009.
    • (2009) IEEE Trans. Syst., Man, Cybern. C, Appl., Rev. , vol.39 , Issue.2 , pp. 201-213
    • Wei, T.1    Huang, Y.F.2    Chen, C.L.P.3
  • 9
    • 84890442725 scopus 로고    scopus 로고
    • Hierarchical feature extraction with local neural response for image recognition
    • Apr.
    • H. Li, Y. T. Wei, L. Q. Li, and C. L. P. Chen, "Hierarchical feature extraction with local neural response for image recognition," IEEE Trans. Cybern., vol. 43, no. 2, pp. 412-424, Apr. 2013.
    • (2013) IEEE Trans. Cybern. , vol.43 , Issue.2 , pp. 412-424
    • Li, H.1    Wei, Y.T.2    Li, L.Q.3    Chen, C.L.P.4
  • 10
    • 70349470960 scopus 로고    scopus 로고
    • A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant
    • Jan.
    • E. Zio and F. Di Maio, "A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear power plant," Rel. Eng. Syst. Saf., vol. 95, no. 1, pp. 49-57, Jan. 2010.
    • (2010) Rel. Eng. Syst. Saf. , vol.95 , Issue.1 , pp. 49-57
    • Zio, E.1    Di Maio, F.2
  • 11
    • 84860375483 scopus 로고    scopus 로고
    • Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    • Jul.
    • C. Hu, B. D. Youn, P. Wang, and J. T. Yoon, "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliab. Eng. Syst. Saf., vol. 103, pp. 120-135, Jul. 2012.
    • (2012) Reliab. Eng. Syst. Saf. , vol.103 , pp. 120-135
    • Hu, C.1    Youn, B.D.2    Wang, P.3    Yoon, J.T.4
  • 12
    • 79955575020 scopus 로고    scopus 로고
    • Intelligent prognostics for battery health monitoring based on sample entropy
    • Sep.
    • A. Widodo, M. C. Shim, W. Caesarendra, and B. S. Yang, "Intelligent prognostics for battery health monitoring based on sample entropy," Expert Syst. Appl., vol. 38, no. 9, pp. 11763-11769, Sep. 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11763-11769
    • Widodo, A.1    Shim, M.C.2    Caesarendra, W.3    Yang, B.S.4
  • 13
    • 0032664638 scopus 로고    scopus 로고
    • Determination of state-of-health of batteries by fuzzy logic methodology
    • Jul.
    • A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, "Determination of state-of-health of batteries by fuzzy logic methodology," J. Power Sources, vol. 80, no. 1, pp. 293-300, Jul. 1999.
    • (1999) J. Power Sources , vol.80 , Issue.1 , pp. 293-300
    • Salkind, A.J.1    Fennie, C.2    Singh, P.3    Atwater, T.4    Reisner, D.E.5
  • 14
    • 80054823206 scopus 로고    scopus 로고
    • System identification and estimation framework for pivotal automotive battery management system characteristics
    • Nov.
    • B. Pattipati, C. Sankavaram, and K. R. Pattipati, "System identification and estimation framework for pivotal automotive battery management system characteristics," IEEE Trans. Syst., Man, Cybern. C, Appl., Rev., vol. 41, no. 6, pp. 869-884, Nov. 2011.
    • (2011) IEEE Trans. Syst., Man, Cybern. C, Appl., Rev. , vol.41 , Issue.6 , pp. 869-884
    • Pattipati, B.1    Sankavaram, C.2    Pattipati, K.R.3
  • 15
    • 33845633182 scopus 로고    scopus 로고
    • Forecasting systems reliability based on support vector regression with genetic algorithms
    • Apr.
    • K. Y. Chen, "Forecasting systems reliability based on support vector regression with genetic algorithms," Rel. Eng. Syst. Saf., vol. 92, no. 4, pp. 423-432, Apr. 2007.
    • (2007) Rel. Eng. Syst. Saf. , vol.92 , Issue.4 , pp. 423-432
    • Chen, K.Y.1
  • 16
    • 0442296729 scopus 로고    scopus 로고
    • Support vector machines for wind speed prediction
    • DOI 10.1016/j.renene.2003.11.009
    • M. A. Mohandes, T. O. Halawani, and S. Reman, "Support vector machines for wind speed prediction," Renew. Energ., vol. 29, no. 6, pp. 939-947, May 2004. (Pubitemid 38242182)
    • (2004) Renewable Energy , vol.29 , Issue.6 , pp. 939-947
    • Mohandes, M.A.1    Halawani, T.O.2    Rehman, S.3    Hussain, A.A.4
  • 17
    • 33644693593 scopus 로고    scopus 로고
    • Systems reliability forecasting based on support vector machines with genetic algorithms
    • Feb.
    • P. F. Pai, "Systems reliability forecasting based on support vector machines with genetic algorithms," Math. Comput. Model., vol. 43, nos. 3-4, pp. 262-274, Feb. 2006.
    • (2006) Math. Comput. Model. , vol.43 , Issue.3-4 , pp. 262-274
    • Pai, P.F.1
  • 18
    • 33646130599 scopus 로고    scopus 로고
    • Software reliability forecasting by support vector machines with simulated annealing algorithms
    • Jun.
    • P. F. Pai and W. C. Hong, "Software reliability forecasting by support vector machines with simulated annealing algorithms," J. Syst. Softw., vol. 79, no. 6, pp. 747-755, Jun. 2006.
    • (2006) J. Syst. Softw. , vol.79 , Issue.6 , pp. 747-755
    • Pai, P.F.1    Hong, W.C.2
  • 19
    • 9244240793 scopus 로고    scopus 로고
    • Load forecasting using support vector machines: A study on eunite competition 2001
    • Nov.
    • B. J. Chen, M. W. Chang, and C. J. Lin, "Load forecasting using support vector machines: A study on eunite competition 2001," IEEE Trans. Power Syst., vol. 19, no. 4, pp. 1821-1830, Nov. 2004.
    • (2004) IEEE Trans. Power Syst. , vol.19 , Issue.4 , pp. 1821-1830
    • Chen, B.J.1    Chang, M.W.2    Lin, C.J.3
  • 20
    • 77953719971 scopus 로고    scopus 로고
    • Electric load forecasting based on locally weighted support vector regression
    • Nov.
    • E. E. Elattar, J. Goulermas, and Q. H. Wu. "Electric load forecasting based on locally weighted support vector regression," IEEE Trans. Syst., Man, Cybern. C, Appl., Rev., vol. 40, no. 4, pp. 438-447, Nov. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. C, Appl., Rev. , vol.40 , Issue.4 , pp. 438-447
    • Elattar, E.E.1    Goulermas, J.2    Wu., Q.H.3
  • 21
    • 79953723443 scopus 로고    scopus 로고
    • A probabilistic SVM based decision system for pain diagnosis
    • Aug.
    • J. Yang, H. X. Li, and Y. Hu, "A probabilistic SVM based decision system for pain diagnosis," Expert Syst. Appl., vol. 38, no. 8, pp. 9346-9351, Aug. 2011.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 9346-9351
    • Yang, J.1    Li, H.X.2    Hu, Y.3
  • 22
    • 84864528081 scopus 로고    scopus 로고
    • Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows
    • Apr.
    • D. S. Kim, J. H. Kim, M. Gyunna, and J. W. Kim, "Uncertainty analysis of data-based models for estimating collapse moments of wall-thinned pipe bends and elbows," Nucl. Eng. Technol., vol. 44, no. 3, pp. 323-330, Apr. 2012.
    • (2012) Nucl. Eng. Technol. , vol.44 , Issue.3 , pp. 323-330
    • Kim, D.S.1    Kim, J.H.2    Gyunna, M.3    Kim, J.W.4
  • 23
    • 84873648199 scopus 로고    scopus 로고
    • Nuclear power plant components condition monitoring by probabilistic support vector machine
    • Apr.
    • J. Liu, R. Seraoui, V. Vitelli, and E. Zio, "Nuclear power plant components condition monitoring by probabilistic support vector machine," Ann. Nucl. Energy, vol. 56, pp. 23-33, Apr. 2013.
    • (2013) Ann. Nucl. Energy , vol.56 , pp. 23-33
    • Liu, J.1    Seraoui, R.2    Vitelli, V.3    Zio, E.4
  • 25
    • 33947195340 scopus 로고    scopus 로고
    • Noise smoothing for nonlinear time series using wavelet soft threshold
    • DOI 10.1109/LSP.2006.881518
    • M. Han, Y. H. Liu, J. H. Xi, and W. Guo, "Noise smoothing for nonlinear time series using wavelet soft threshold," IEEE Signal Process. Lett., vol. 14, no. 1, pp. 62-65, Jan. 2007. (Pubitemid 46431335)
    • (2007) IEEE Signal Processing Letters , vol.14 , Issue.1 , pp. 62-65
    • Han, M.1    Liu, Y.2    Xi, J.3    Guo, W.4
  • 26
    • 80055015162 scopus 로고    scopus 로고
    • Dynamic wavelet-based tool for gearbox diagnosis
    • Jan.
    • F. K. Omar and A. M. Gaouda, "Dynamic wavelet-based tool for gearbox diagnosis," Mech. Syst. Signal Process., vol. 26, no. 1, pp. 190-204, Jan. 2012.
    • (2012) Mech. Syst. Signal Process. , vol.26 , Issue.1 , pp. 190-204
    • Omar, F.K.1    Gaouda, A.M.2
  • 27
    • 33646894101 scopus 로고    scopus 로고
    • Hierarchical-likelihood-based wavelet method for denoising signals with missing data
    • DOI 10.1109/LSP.2006.871713
    • D. Kim, Y. Lee, and H. S. Oh, "Hierarchical-likelihood-based wavelet method for denoising signals with missing data," IEEE Signal Process. Lett., vol. 13, no. 6, pp. 361-364, Jun. 2006. (Pubitemid 43786525)
    • (2006) IEEE Signal Processing Letters , vol.13 , Issue.6 , pp. 361-364
    • Kim, D.1    Lee, Y.2    Oh, H.-S.3
  • 29
    • 52649148633 scopus 로고    scopus 로고
    • Bayesian wavelet-based image denoising using the Gauss-Hermite expansion
    • Oct.
    • S. M. M. Rahman, M. O. Ahmadand, and M. N. S. Swamy, "Bayesian wavelet-based image denoising using the Gauss-Hermite expansion," IEEE Trans. Image Process., vol. 17, no. 10, pp. 1755-1771, Oct. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.10 , pp. 1755-1771
    • Rahman, S.M.M.1    Ahmadand, M.O.2    Swamy, M.N.S.3
  • 30
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • Dec.
    • L. Y. Cao, "Practical method for determining the minimum embedding dimension of a scalar time series," Phys. D, vol. 110, nos. 1-2, pp. 43-50, Dec. 1997.
    • (1997) Phys. D , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.Y.1
  • 31
    • 35949011725 scopus 로고
    • Singular value decomposition and the Grassberger-Procaccia algorithm
    • Sep.
    • A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E. Rapp, "Singular value decomposition and the Grassberger-Procaccia algorithm," Phys. Rev. A, vol. 38, no. 6, pp. 3017-3026, Sep. 1988.
    • (1988) Phys. Rev. A , vol.38 , Issue.6 , pp. 3017-3026
    • Albano, A.M.1    Muench, J.2    Schwartz, C.3    Mees, A.I.4    Rapp, P.E.5
  • 32
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • Mar.
    • M. B. Kennel, R. Brown, and H. D. Abarbanel, "Determining embedding dimension for phase-space reconstruction using a geometrical construction," Phys. Rev. A, vol. 45, no. 6, pp. 3403-3411, Mar. 1992.
    • (1992) Phys. Rev. A , vol.45 , Issue.6 , pp. 3403-3411
    • Kennel, M.B.1    Brown, R.2    Abarbanel, H.D.3
  • 33
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • May
    • D. L. Donoho, "De-noising by soft-thresholding," IEEE Trans. Inform. Theory, vol. 41, no. 3, pp. 613-627, May 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , Issue.3 , pp. 613-627
    • Donoho, D.L.1
  • 36
    • 77954088141 scopus 로고    scopus 로고
    • Stochastic simulation of patterns using distance-based pattern modeling
    • Apr.
    • M. Honarkhah and J. Caers, "Stochastic simulation of patterns using distance-based pattern modeling," Math. Geosci., vol. 42, no. 4, pp. 487-517, Apr. 2010.
    • (2010) Math. Geosci. , vol.42 , Issue.4 , pp. 487-517
    • Honarkhah, M.1    Caers, J.2
  • 37
    • 0001574653 scopus 로고
    • Prediction by exponentially weighted moving averages and related methods
    • D. R. Cox, "Prediction by exponentially weighted moving averages and related methods," J. Roy. Statist. Soc. B, vol. 23, no. 2, pp. 414-422, 1961.
    • (1961) J. Roy. Statist. Soc. B , vol.23 , Issue.2 , pp. 414-422
    • Cox, D.R.1
  • 38
    • 0033097707 scopus 로고    scopus 로고
    • A comparison between neural-network forecasting techniques-case study: River flow forecasting
    • Mar.
    • A. F. Atiya, S. M. E. Shoura, S. I. Shaheen, and M. S. E. Sherif, "A comparison between neural-network forecasting techniques-case study: River flow forecasting," IEEE Trans. Neur. Netw., vol. 10, no. 2, pp. 402-409, Mar. 1999.
    • (1999) IEEE Trans. Neur. Netw. , vol.10 , Issue.2 , pp. 402-409
    • Atiya, A.F.1    Shoura, S.M.E.2    Shaheen, S.I.3    Sherif, M.S.E.4
  • 39
    • 33644514387 scopus 로고    scopus 로고
    • What does the yield curve tell us about GDP growth?"
    • Mar.
    • A. Ang, M. Piazzesi, and M. Wei, "What does the yield curve tell us about GDP growth?" J. Econometr., vol. 131, nos. 1-2, pp. 359-403, Mar. 2006.
    • (2006) J. Econometr. , vol.131 , Issue.1-2 , pp. 359-403
    • Ang, A.1    Piazzesi, M.2    Wei, M.3
  • 40
    • 33747879841 scopus 로고    scopus 로고
    • A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series
    • DOI 10.1016/j.jeconom.2005.07.020, PII S030440760500165X
    • M. Marcellino, J. Stock, and M. W. Watson, "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," J. Econometr., vol. 135, nos. 1-2, pp. 499-526, Nov. 2006. (Pubitemid 44291900)
    • (2006) Journal of Econometrics , vol.135 , Issue.1-2 , pp. 499-526
    • Marcellino, M.1    Stock, J.H.2    Watson, M.W.3
  • 41
    • 0001224048 scopus 로고    scopus 로고
    • Sparse bayesian learning and the relevance vector machine
    • DOI 10.1162/15324430152748236
    • M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," J. Mach. Learn. Res., vol. 1, no. 6, pp. 211-244, Jun. 2001. (Pubitemid 33687203)
    • (2001) Journal of Machine Learning Research , vol.1 , Issue.3 , pp. 211-244
    • Tipping, M.E.1
  • 42
    • 56349151737 scopus 로고    scopus 로고
    • Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression
    • Mar.
    • J. Yuan, L. F. Bo, K. S. Wang, and T. Yu, "Adaptive spherical Gaussian kernel in sparse Bayesian learning framework for nonlinear regression," Expert Syst. Appl., vol. 36, no. 2, pp. 3982-3989, Mar. 2009.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3982-3989
    • Yuan, J.1    Bo, L.F.2    Wang, K.S.3    Yu, T.4
  • 44
    • 77949658813 scopus 로고    scopus 로고
    • Application of relevance vector machine and logistic regression for machine degradation assessment
    • May
    • W. Caesarendra, A. Widodo, and B. S. Yang, "Application of relevance vector machine and logistic regression for machine degradation assessment," Mech. Syst. Signal Process., vol. 24, no. 4, pp. 1161-1171, May 2010.
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.4 , pp. 1161-1171
    • Caesarendra, W.1    Widodo, A.2    Yang, B.S.3
  • 45
    • 34547451767 scopus 로고    scopus 로고
    • Smooth relevance vector machine: A smoothness prior extension of the RVM
    • DOI 10.1007/s10994-007-5012-z
    • A. Schmolck and R. Everson, "Smooth relevance vector machine: A smoothness prior extension of the RVM," Mach. Learn., vol. 68, no. 2, pp. 107-135, Aug. 2007. (Pubitemid 47165756)
    • (2007) Machine Learning , vol.68 , Issue.2 , pp. 107-135
    • Schmolck, A.1    Everson, R.2
  • 46
    • 0033220805 scopus 로고    scopus 로고
    • On global, local, mixed and neighborhood kernels for support vector machines
    • DOI 10.1016/S0167-8655(99)00086-0
    • V. L. Brailovsky, O. Barzilay, and R. Shahave, "On global, local and mixed and neighborhood kernels for support vector machines," Pattern Recognit. Lett., vol. 20, nos. 11-13, pp. 1183-1190, Nov. 1999. (Pubitemid 32261896)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1183-1190
    • Brailovsky, V.L.1    Barzilay, O.2    Shahave, R.3
  • 47
    • 68149099009 scopus 로고    scopus 로고
    • Identify capacity fading mechanism in a commercial LiFePO4 cell
    • Oct.
    • M. Dubarry and B. Liaw, "Identify capacity fading mechanism in a commercial LiFePO4 cell," J. Power Sources, vol. 194, no. 1, pp. 541-549, Oct. 2009.
    • (2009) J. Power Sources , vol.194 , Issue.1 , pp. 541-549
    • Dubarry, M.1    Liaw, B.2
  • 48
    • 3142674441 scopus 로고    scopus 로고
    • Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 3. State and parameter estimation
    • DOI 10.1016/j.jpowsour.2004.02.033
    • G. L. Plett, "Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs-Part 3: State and parameter estimation," J. Power Sources, vol. 134, no. 2, pp. 277-292, Aug. 2004. (Pubitemid 41325995)
    • (2004) Journal of Power Sources , vol.134 , Issue.2 , pp. 277-292
    • Plett, G.L.1
  • 49
    • 78649499149 scopus 로고    scopus 로고
    • Recursive approximate weighted total least squares estimation of battery cell total capacity
    • Feb.
    • G. L. Plett, "Recursive approximate weighted total least squares estimation of battery cell total capacity," J. Power Sources, vol. 196, no. 4, pp. 2319-2331, Feb. 2011.
    • (2011) J. Power Sources , vol.196 , Issue.4 , pp. 2319-2331
    • Plett, G.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.