메뉴 건너뛰기




Volumn 4, Issue , 2015, Pages 2750-2756

Large-scale multi-view spectral clustering via bipartite graph

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; EFFICIENCY; GRAPH THEORY;

EID: 84960088433     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (504)

References (32)
  • 5
    • 84949842880 scopus 로고    scopus 로고
    • A convex formulation for spectral shrunk clustering
    • Chang, X.; Nie, F.; Ma, Z.; and Yang, Y. 2015. A convex formulation for spectral shrunk clustering. In AAAI.
    • (2015) AAAI
    • Chang, X.1    Nie, F.2    Ma, Z.3    Yang, Y.4
  • 6
    • 84933282749 scopus 로고    scopus 로고
    • Large scale spectral clustering with landmark-based representation
    • Chen, X., and Cai, D. 2011. Large scale spectral clustering with landmark-based representation. In AAAI.
    • (2011) AAAI
    • Chen, X.1    Cai, D.2
  • 12
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • Fei-Fei, L.; Fergus, R.; and Perona, P. 2007. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1):59-70.
    • (2007) Computer Vision and Image Understanding , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 85016203763 scopus 로고    scopus 로고
    • Subselective quantization for large-scale image search
    • Li, Y.; Chen, C.; Liu, W.; and Huang, J. 2014. Subselective quantization for large-scale image search. In AAAI.
    • (2014) AAAI
    • Li, Y.1    Chen, C.2    Liu, W.3    Huang, J.4
  • 18
    • 84886433522 scopus 로고    scopus 로고
    • Multi-view clustering via joint nonnegative matrix factorization
    • SIAM
    • Liu, J.; Wang, C.; Gao, J.; and Han, J. 2013. Multi-view clustering via joint nonnegative matrix factorization. In Proc. of SDM, volume 13, 252-260. SIAM.
    • (2013) Proc. of SDM , vol.13 , pp. 252-260
    • Liu, J.1    Wang, C.2    Gao, J.3    Han, J.4
  • 22
    • 80455143729 scopus 로고    scopus 로고
    • Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering
    • Nie, F.; Zeng, Z.; Tsang, I. W.; Xu, D.; and Zhang, C. 2011. Spectral embedded clustering: A framework for in-sample and out-of-sample spectral clustering. Neural Networks, IEEE Transactions on 22(11):1796-1808.
    • (2011) Neural Networks, IEEE Transactions On , vol.22 , Issue.11 , pp. 1796-1808
    • Nie, F.1    Zeng, Z.2    Tsang, I.W.3    Xu, D.4    Zhang, C.5
  • 25
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • Oliva, A., and Torralba, A. 2001. Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision 42(3):145-175.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 29
    • 84949887670 scopus 로고    scopus 로고
    • Spectral clustering for a large data set by reducing the similarity matrix size
    • Shinnou, H., and Sasaki, M. 2008. Spectral clustering for a large data set by reducing the similarity matrix size. In LREC.
    • (2008) LREC
    • Shinnou, H.1    Sasaki, M.2
  • 30
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Von Luxburg, U. 2007. A tutorial on spectral clustering. Statistics and computing 17(4):395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Von Luxburg, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.