메뉴 건너뛰기




Volumn 102, Issue 3, 2016, Pages 323-348

Learning (predictive) risk scores in the presence of censoring due to interventions

Author keywords

Gradient boosted regression trees; MIMIC; Ranking; Sepsis; Severity score

Indexed keywords

ARTIFICIAL INTELLIGENCE; SOFTWARE ENGINEERING;

EID: 84959493690     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-015-5527-7     Document Type: Article
Times cited : (32)

References (44)
  • 1
    • 84959508637 scopus 로고    scopus 로고
    • AHRQ. (2015). Guideline syntheses
    • AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx.
  • 2
    • 31844446958 scopus 로고    scopus 로고
    • Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning
    • Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96).
    • (2005) ACM , pp. 89-96
    • Burges, C.1    Shaked, T.2    Renshaw, E.3    Lazier, A.4    Deeds, M.5    Hamilton, N.6    Hullender, G.7
  • 4
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp
    • Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200).
    • (2006) 193–200)
    • Burges, C.J.1    Ragno, R.2    Le, Q.V.3
  • 5
    • 77953642308 scopus 로고    scopus 로고
    • Efficient algorithms for ranking with SVMs
    • Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval, 13(3), 201–215.
    • (2010) Information Retrieval , vol.13 , Issue.3 , pp. 201-215
    • Chapelle, O.1    Keerthi, S.S.2
  • 6
    • 33847626350 scopus 로고    scopus 로고
    • Support vector ordinal regression
    • Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792–815.
    • (2007) Neural Computation , vol.19 , Issue.3 , pp. 792-815
    • Chu, W.1    Keerthi, S.S.2
  • 7
    • 0035116142 scopus 로고    scopus 로고
    • Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models
    • Clermont, G., Angus, D. C., DiRusso, S. M., Griffin, M., & Linde-Zwirble, W. T. (2001). Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Critical Care Medicine, 29(2), 291–296.
    • (2001) Critical Care Medicine , vol.29 , Issue.2 , pp. 291-296
    • Clermont, G.1    Angus, D.C.2    DiRusso, S.M.3    Griffin, M.4    Linde-Zwirble, W.T.5
  • 9
    • 85040218000 scopus 로고    scopus 로고
    • Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
    • Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 12
    • 79952509225 scopus 로고    scopus 로고
    • Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments
    • Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95.
    • (2011) Critical Care Medicine , vol.15 , Issue.2 , pp. 95
    • Ghanem-Zoubi, N.O.1    Vardi, M.2    Laor, A.3    Weber, G.4    Bitterman, H.5
  • 14
    • 0008371352 scopus 로고    scopus 로고
    • Large margin rank boundaries for ordinal regression
    • Cambridge: The MIT Press
    • Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press.
    • (2000) Advances in Large Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3
  • 15
    • 84959499758 scopus 로고    scopus 로고
    • Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12)
    • Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12).
  • 17
    • 84875665498 scopus 로고    scopus 로고
    • Detecting hazardous intensive care patient episodes using real-time mortality models
    • Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis.
    • (2009) PhD thesis
    • Hug, C.1
  • 19
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining
    • Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142).
    • (2002) ACM , pp. 133-142
    • Joachims, T.1
  • 20
    • 78651253781 scopus 로고    scopus 로고
    • Severity of illness scoring systems in the intensive care unit
    • Keegan, M. T., Gajic, O., & Afessa, B. (2011). Severity of illness scoring systems in the intensive care unit. Critical Care Medicine, 39(1), 163–169.
    • (2011) Critical Care Medicine , vol.39 , Issue.1 , pp. 163-169
    • Keegan, M.T.1    Gajic, O.2    Afessa, B.3
  • 23
    • 85126600674 scopus 로고    scopus 로고
    • Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM
    • Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM.
  • 26
    • 33750340101 scopus 로고    scopus 로고
    • Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM
    • Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM.
  • 28
    • 60849102446 scopus 로고    scopus 로고
    • Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review
    • Minne, L., Abu-Hanna, A., de Jonge, E., et al. (2008). Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review. Critical Care Medicine, 12(6), R161.
    • (2008) Critical Care Medicine , vol.12 , Issue.6
    • Minne, L.1    Abu-Hanna, A.2    de Jonge, E.3
  • 29
    • 84858045252 scopus 로고    scopus 로고
    • Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge
    • Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89).
    • (2011) Citeseer , pp. 77-89
    • Mohan, A.1    Chen, Z.2    Weinberger, K.Q.3
  • 30
    • 84862625643 scopus 로고    scopus 로고
    • Models for disease progression: New approaches and uses
    • Mould, D. (2012). Models for disease progression: New approaches and uses. Clinical Pharmacology & Therapeutics, 92(1), 125–131.
    • (2012) Clinical Pharmacology & Therapeutics , vol.92 , Issue.1 , pp. 125-131
    • Mould, D.1
  • 31
    • 84901259802 scopus 로고    scopus 로고
    • Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings
    • Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109.
    • (2013) American Medical Informatics Association , vol.2013 , pp. 1109
    • Paxton, C.1    Niculescu-Mizil, A.2    Saria, S.3
  • 32
    • 84920273517 scopus 로고    scopus 로고
    • Mortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based study
    • Pirracchio, R., Petersen, M. L., Carone, M., Rigon, M. R., Chevret, S., & van der Laan, M. J. (2015). Mortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based study. The Lancet Respiratory Medicine, 3(1), 42–52.
    • (2015) The Lancet Respiratory Medicine , vol.3 , Issue.1 , pp. 42-52
    • Pirracchio, R.1    Petersen, M.L.2    Carone, M.3    Rigon, M.R.4    Chevret, S.5    van der Laan, M.J.6
  • 33
    • 36448946824 scopus 로고    scopus 로고
    • Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
    • Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286).
    • (2007) ACM , pp. 279-286
    • Qin, T.1    Zhang, X.D.2    Wang, D.S.3    Liu, T.Y.4    Lai, W.5    Li, H.6
  • 34
    • 0036945542 scopus 로고    scopus 로고
    • MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002
    • Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644).
    • (2002) IEEE , pp. 641-644
    • Saeed, M.1    Lieu, C.2    Raber, G.3    Mark, R.4
  • 36
    • 84959458195 scopus 로고    scopus 로고
    • Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems
    • Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems.
  • 37
    • 77956583100 scopus 로고    scopus 로고
    • Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48)
    • Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65.
    • (2010) 48ra65–48ra65
    • Saria, S.1    Rajani, A.K.2    Gould, J.3    Koller, D.4    Penn, A.A.5
  • 39
    • 36448961557 scopus 로고    scopus 로고
    • Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
    • Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390).
    • (2007) ACM , pp. 383-390
    • Tsai, M.F.1    Liu, T.Y.2    Qin, T.3    Chen, H.H.4    Ma, W.Y.5
  • 41
    • 84907021735 scopus 로고    scopus 로고
    • Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining
    • Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94).
    • (2014) ACM , pp. 85-94
    • Wang, X.1    Sontag, D.2    Wang, F.3
  • 42
    • 84877753184 scopus 로고    scopus 로고
    • Patient risk stratification for hospital-associated c. diff as a time-series classification task
    • Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 467-475
    • Wiens, J.1    Horvitz, E.2    Guttag, J.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.