-
1
-
-
84959508637
-
-
AHRQ. (2015). Guideline syntheses
-
AHRQ. (2015). Guideline syntheses. http://www.guideline.gov/syntheses/index.aspx.
-
-
-
-
2
-
-
31844446958
-
Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning
-
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., & Hullender, G. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning, ACM, (pp. 89–96).
-
(2005)
ACM
, pp. 89-96
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hullender, G.7
-
4
-
-
84864039510
-
Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp
-
Burges, C. J., Ragno, R., & Le, Q. V. (2006). Learning to rank with nonsmooth cost functions. In: Advances in neural information processing systems, (pp. 193–200).
-
(2006)
193–200)
-
-
Burges, C.J.1
Ragno, R.2
Le, Q.V.3
-
5
-
-
77953642308
-
Efficient algorithms for ranking with SVMs
-
Chapelle, O., & Keerthi, S. S. (2010). Efficient algorithms for ranking with SVMs. Information Retrieval, 13(3), 201–215.
-
(2010)
Information Retrieval
, vol.13
, Issue.3
, pp. 201-215
-
-
Chapelle, O.1
Keerthi, S.S.2
-
6
-
-
33847626350
-
Support vector ordinal regression
-
Chu, W., & Keerthi, S. S. (2007). Support vector ordinal regression. Neural Computation, 19(3), 792–815.
-
(2007)
Neural Computation
, vol.19
, Issue.3
, pp. 792-815
-
-
Chu, W.1
Keerthi, S.S.2
-
7
-
-
0035116142
-
Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models
-
Clermont, G., Angus, D. C., DiRusso, S. M., Griffin, M., & Linde-Zwirble, W. T. (2001). Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Critical Care Medicine, 29(2), 291–296.
-
(2001)
Critical Care Medicine
, vol.29
, Issue.2
, pp. 291-296
-
-
Clermont, G.1
Angus, D.C.2
DiRusso, S.M.3
Griffin, M.4
Linde-Zwirble, W.T.5
-
8
-
-
84873714375
-
Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012
-
Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H., Opal, S. M., et al. (2013). Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Medicine, 39(2), 165–228.
-
(2013)
Intensive Care Medicine
, vol.39
, Issue.2
, pp. 165-228
-
-
Dellinger, R.P.1
Levy, M.M.2
Rhodes, A.3
Annane, D.4
Gerlach, H.5
Opal, S.M.6
Sevransky, J.E.7
Sprung, C.L.8
Douglas, I.S.9
Jaeschke, R.10
-
9
-
-
85040218000
-
-
Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
-
Dyagilev, K., & Saria, S. (2015). Learning a severity score for sepsis: A novel approach based on clinical comparisons. In AMIA Annual symposium proceedings, American Medical Informatics Association
-
-
-
-
10
-
-
0031012761
-
A prediction rule to identify low-risk patients with community-acquired pneumonia
-
Fine, M. J., Auble, T. E., Yealy, D. M., Hanusa, B. H., Weissfeld, L. A., Singer, D. E., et al. (1997). A prediction rule to identify low-risk patients with community-acquired pneumonia. New England Journal of Medicine, 336(4), 243–250.
-
(1997)
New England Journal of Medicine
, vol.336
, Issue.4
, pp. 243-250
-
-
Fine, M.J.1
Auble, T.E.2
Yealy, D.M.3
Hanusa, B.H.4
Weissfeld, L.A.5
Singer, D.E.6
Coley, C.M.7
Marrie, T.J.8
Kapoor, W.N.9
-
11
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
12
-
-
79952509225
-
Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments
-
Ghanem-Zoubi, N. O., Vardi, M., Laor, A., Weber, G., & Bitterman, H. (2011). Assessment of disease-severity scoring systems for patients with sepsis in general internal medicine departments. Critical Care Medicine, 15(2), R95.
-
(2011)
Critical Care Medicine
, vol.15
, Issue.2
, pp. 95
-
-
Ghanem-Zoubi, N.O.1
Vardi, M.2
Laor, A.3
Weber, G.4
Bitterman, H.5
-
13
-
-
84938704873
-
A targeted real-time early warning score (TREWScore) for septic shock
-
Henry, K. E., Hager, D. N., Provonost, P. J., & Saria, S. (2015). A targeted real-time early warning score (TREWScore) for septic shock. Science Translational Medicine, 7, 299ra122.
-
(2015)
Science Translational Medicine
, vol.7
-
-
Henry, K.E.1
Hager, D.N.2
Provonost, P.J.3
Saria, S.4
-
14
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
Cambridge: The MIT Press
-
Herbrich, R., Graepel, T., & Obermayer, K. (2000). Large margin rank boundaries for ordinal regression. In: Advances in Large Margin Classifiers, (pp. 115–132). Cambridge: The MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
15
-
-
84959499758
-
-
Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12)
-
Ho, J. C., Lee, C. H., & Ghosh, J. (2012). Imputation-enhanced prediction of septic shock in ICU patients. In Proceedings of the ACM SIGKDD workshop on health informatics (HI-KDD12).
-
-
-
-
16
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
Hothorn, T., Hornik, K., & Zeileis, A. (2006). Unbiased recursive partitioning: A conditional inference framework. Journal of Computational and Graphical Statistics, 15(3), 651–674.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.3
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
17
-
-
84875665498
-
Detecting hazardous intensive care patient episodes using real-time mortality models
-
Hug, C. (2009). Detecting hazardous intensive care patient episodes using real-time mortality models. PhD thesis.
-
(2009)
PhD thesis
-
-
Hug, C.1
-
18
-
-
0142105862
-
Multistate Markov models for disease progression with classification error
-
Jackson, C. H., Sharples, L. D., Thompson, S. G., Duffy, S. W., & Couto, E. (2003). Multistate Markov models for disease progression with classification error. Journal of the Royal Statistical Society: Series D (The Statistician), 52(2), 193–209.
-
(2003)
Journal of the Royal Statistical Society: Series D (The Statistician)
, vol.52
, Issue.2
, pp. 193-209
-
-
Jackson, C.H.1
Sharples, L.D.2
Thompson, S.G.3
Duffy, S.W.4
Couto, E.5
-
19
-
-
0242456822
-
Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining
-
Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, ACM, (pp. 133–142).
-
(2002)
ACM
, pp. 133-142
-
-
Joachims, T.1
-
20
-
-
78651253781
-
Severity of illness scoring systems in the intensive care unit
-
Keegan, M. T., Gajic, O., & Afessa, B. (2011). Severity of illness scoring systems in the intensive care unit. Critical Care Medicine, 39(1), 163–169.
-
(2011)
Critical Care Medicine
, vol.39
, Issue.1
, pp. 163-169
-
-
Keegan, M.T.1
Gajic, O.2
Afessa, B.3
-
21
-
-
0022256529
-
APACHE II: A severity of disease classification system
-
Knaus, W. A., Draper, E. A., Wagner, D. P., & Zimmerman, J. E. (1985). APACHE II: A severity of disease classification system. Critical Care Medicine, 13(10), 818–829.
-
(1985)
Critical Care Medicine
, vol.13
, Issue.10
, pp. 818-829
-
-
Knaus, W.A.1
Draper, E.A.2
Wagner, D.P.3
Zimmerman, J.E.4
-
22
-
-
81055145174
-
Nationwide trends of severe sepsis in the 21st century (2000–2007)
-
Kumar, G., Kumar, N., Taneja, A., Kaleekal, T., Tarima, S., McGinley, E., et al. (2011). Nationwide trends of severe sepsis in the 21st century (2000–2007). CHEST Journal, 140(5), 1223–1231.
-
(2011)
CHEST Journal
, vol.140
, Issue.5
, pp. 1223-1231
-
-
Kumar, G.1
Kumar, N.2
Taneja, A.3
Kaleekal, T.4
Tarima, S.5
McGinley, E.6
Jimenez, E.7
Mohan, A.8
Khan, R.A.9
Whittle, J.10
-
23
-
-
85126600674
-
-
Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM
-
Kuo, T. M., Lee, C. P., & Lin, C. J. (2014). Large-scale kernel RankSVM. In Proceedings of the 2014 SIAM international conference on data mining, SIAM.
-
-
-
-
24
-
-
0028784689
-
Multiple organ dysfunction score: A reliable descriptor of a complex clinical outcome
-
Marshall, J. C., Cook, D. J., Christou, N. V., Bernard, G. R., Sprung, C. L., & Sibbald, W. J. (1995). Multiple organ dysfunction score: A reliable descriptor of a complex clinical outcome. Critical Care Medicine, 23(10), 1638–1652.
-
(1995)
Critical Care Medicine
, vol.23
, Issue.10
, pp. 1638-1652
-
-
Marshall, J.C.1
Cook, D.J.2
Christou, N.V.3
Bernard, G.R.4
Sprung, C.L.5
Sibbald, W.J.6
-
25
-
-
84898978212
-
Boosting algorithms as gradient descent in function space
-
Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Boosting algorithms as gradient descent in function space. Advances in Neural Information Processing Systems, 12, 512–518.
-
(1999)
Advances in Neural Information Processing Systems
, vol.12
, pp. 512-518
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.3
Frean, M.4
-
26
-
-
33750340101
-
-
Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM
-
Matveeva, I., Burges, C., Burkard, T., Laucius, A., & Wong, L. (2006). High accuracy retrieval with multiple nested ranker. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 437–444), ACM.
-
-
-
-
27
-
-
0142026090
-
Assessment of disease severity and prognosis
-
Medsger, T., Bombardieri, S., Czirjak, L., Scorza, R., Rossa, A., & Bencivelli, W. (2003). Assessment of disease severity and prognosis. Clinical and Experimental Rheumatology, 21(3; SUPP/29), S42–S46.
-
(2003)
Clinical and Experimental Rheumatology
, vol.21
, Issue.3; SUPP/29
, pp. S42-S46
-
-
Medsger, T.1
Bombardieri, S.2
Czirjak, L.3
Scorza, R.4
Rossa, A.5
Bencivelli, W.6
-
28
-
-
60849102446
-
Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review
-
Minne, L., Abu-Hanna, A., de Jonge, E., et al. (2008). Evaluation of SOFA-based models for predicting mortality in the ICU: A systematic review. Critical Care Medicine, 12(6), R161.
-
(2008)
Critical Care Medicine
, vol.12
, Issue.6
-
-
Minne, L.1
Abu-Hanna, A.2
de Jonge, E.3
-
29
-
-
84858045252
-
Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge
-
Mohan, A., Chen, Z., & Weinberger, K. Q. (2011). Web-search ranking with initialized gradient boosted regression trees. In Yahoo! learning to rank challenge, Citeseer, (pp. 77–89).
-
(2011)
Citeseer
, pp. 77-89
-
-
Mohan, A.1
Chen, Z.2
Weinberger, K.Q.3
-
30
-
-
84862625643
-
Models for disease progression: New approaches and uses
-
Mould, D. (2012). Models for disease progression: New approaches and uses. Clinical Pharmacology & Therapeutics, 92(1), 125–131.
-
(2012)
Clinical Pharmacology & Therapeutics
, vol.92
, Issue.1
, pp. 125-131
-
-
Mould, D.1
-
31
-
-
84901259802
-
Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings
-
Paxton, C., Niculescu-Mizil, A., & Saria, S. (2013). Developing predictive models using electronic medical records: Challenges and pitfalls. In AMIA annual symposium proceedings, American Medical Informatics Association, vol. 2013, p. 1109.
-
(2013)
American Medical Informatics Association
, vol.2013
, pp. 1109
-
-
Paxton, C.1
Niculescu-Mizil, A.2
Saria, S.3
-
32
-
-
84920273517
-
Mortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based study
-
Pirracchio, R., Petersen, M. L., Carone, M., Rigon, M. R., Chevret, S., & van der Laan, M. J. (2015). Mortality prediction in intensive care units with the super ICU learner algorithm (SICULA): A population-based study. The Lancet Respiratory Medicine, 3(1), 42–52.
-
(2015)
The Lancet Respiratory Medicine
, vol.3
, Issue.1
, pp. 42-52
-
-
Pirracchio, R.1
Petersen, M.L.2
Carone, M.3
Rigon, M.R.4
Chevret, S.5
van der Laan, M.J.6
-
33
-
-
36448946824
-
Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
-
Qin, T., Zhang, X. D., Wang, D. S., Liu, T. Y., Lai, W., & Li, H. (2007). Ranking with multiple hyperplanes. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 279–286).
-
(2007)
ACM
, pp. 279-286
-
-
Qin, T.1
Zhang, X.D.2
Wang, D.S.3
Liu, T.Y.4
Lai, W.5
Li, H.6
-
34
-
-
0036945542
-
MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002
-
Saeed, M., Lieu, C., Raber, G., & Mark, R. (2002). MIMIC II: A massive temporal ICU patient database to support research in intelligent patient monitoring. In Computers in Cardiology, 2002, IEEE, (pp. 641–644).
-
(2002)
IEEE
, pp. 641-644
-
-
Saeed, M.1
Lieu, C.2
Raber, G.3
Mark, R.4
-
35
-
-
79955479858
-
Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database
-
Saeed, M., Villarroel, M., Reisner, A. T., Clifford, G., Lehman, L. W., Moody, G., et al. (2011). Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II): A public-access intensive care unit database. Critical Care Medicine, 39(5), 952.
-
(2011)
Critical Care Medicine
, vol.39
, Issue.5
, pp. 952
-
-
Saeed, M.1
Villarroel, M.2
Reisner, A.T.3
Clifford, G.4
Lehman, L.W.5
Moody, G.6
Heldt, T.7
Kyaw, T.H.8
Moody, B.9
Mark, R.G.10
-
36
-
-
84959458195
-
-
Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems
-
Saria, S., Koller, D., & Penn, A. (2010a). Learning individual and population level traits from clinical temporal data. In Predictive models in personalized medicine workshop, neural information processing systems.
-
-
-
-
37
-
-
77956583100
-
Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48)
-
Saria, S., Rajani, A. K., Gould, J., Koller, D., & Penn, A. A. (2010b). Integration of early physiological responses predicts later illness severity in preterm infants. Science Translational Medicine, 2(48), 48ra65–48ra65.
-
(2010)
48ra65–48ra65
-
-
Saria, S.1
Rajani, A.K.2
Gould, J.3
Koller, D.4
Penn, A.A.5
-
38
-
-
39049091873
-
Effect of a rapid response system for patients in shock on time to treatment and mortality during 5 years
-
Sebat, F., Musthafa, A. A., Johnson, D., Kramer, A. A., Shoffner, D., Eliason, M., et al. (2007). Effect of a rapid response system for patients in shock on time to treatment and mortality during 5 years. Critical Care Medicine, 35(11), 2568–2575.
-
(2007)
Critical Care Medicine
, vol.35
, Issue.11
, pp. 2568-2575
-
-
Sebat, F.1
Musthafa, A.A.2
Johnson, D.3
Kramer, A.A.4
Shoffner, D.5
Eliason, M.6
Henry, K.7
Spurlock, B.8
-
39
-
-
36448961557
-
Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval
-
Tsai, M. F., Liu, T. Y., Qin, T., Chen, H. H., & Ma, W. Y. (2007). Frank: A ranking method with fidelity loss. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval, ACM (pp. 383–390).
-
(2007)
ACM
, pp. 383-390
-
-
Tsai, M.F.1
Liu, T.Y.2
Qin, T.3
Chen, H.H.4
Ma, W.Y.5
-
40
-
-
0030015661
-
The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure
-
Vincent, J. L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., et al. (1996). The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Medicine, 22(7), 707–710.
-
(1996)
Intensive Care Medicine
, vol.22
, Issue.7
, pp. 707-710
-
-
Vincent, J.L.1
Moreno, R.2
Takala, J.3
Willatts, S.4
De Mendonça, A.5
Bruining, H.6
Reinhart, C.7
Suter, P.8
Thijs, L.9
-
41
-
-
84907021735
-
Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining
-
Wang, X., Sontag, D., & Wang, F. (2014). Unsupervised learning of disease progression models. In Proceedings of the twentieth ACM SIGKDD international conference on knowledge discovery and data mining, ACM (pp. 85–94).
-
(2014)
ACM
, pp. 85-94
-
-
Wang, X.1
Sontag, D.2
Wang, F.3
-
42
-
-
84877753184
-
Patient risk stratification for hospital-associated c. diff as a time-series classification task
-
Wiens, J., Horvitz, E., & Guttag, J. V. (2012). Patient risk stratification for hospital-associated c. diff as a time-series classification task. Advances in Neural Information Processing Systems, 25, 467–475.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 467-475
-
-
Wiens, J.1
Horvitz, E.2
Guttag, J.V.3
-
43
-
-
85161963897
-
A general boosting method and its application to learning ranking functions for web search
-
Zheng, Z., Zha, H., Zhang, T., Chapelle, O., Chen, K., & Sun, G. (2008). A general boosting method and its application to learning ranking functions for web search. In Advances in Neural Information Processing Systems, vol. 20, pp. 1697–1704.
-
(2008)
In Advances in Neural Information Processing Systems
, vol.20
, pp. 1697-1704
-
-
Zheng, Z.1
Zha, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
-
44
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|