-
1
-
-
84950291119
-
Functional overlap of the Arabidopsis leaf and root microbiota
-
Bai Y., et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015, 528:364-369.
-
(2015)
Nature
, vol.528
, pp. 364-369
-
-
Bai, Y.1
-
2
-
-
84864460264
-
Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
-
Bulgarelli D., et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488:91-95.
-
(2012)
Nature
, vol.488
, pp. 91-95
-
-
Bulgarelli, D.1
-
3
-
-
84864460685
-
Defining the core Arabidopsis thaliana root microbiome
-
Lundberg D.S., et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488:86-90.
-
(2012)
Nature
, vol.488
, pp. 86-90
-
-
Lundberg, D.S.1
-
4
-
-
84881233841
-
The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms
-
Mendes R., et al. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37:634-663.
-
(2013)
FEMS Microbiol. Rev.
, vol.37
, pp. 634-663
-
-
Mendes, R.1
-
5
-
-
84942197127
-
Metatranscriptomic census of active protists in soils
-
Geisen S., et al. Metatranscriptomic census of active protists in soils. ISME J. 2015, 9:2178-2190.
-
(2015)
ISME J.
, vol.9
, pp. 2178-2190
-
-
Geisen, S.1
-
6
-
-
84914142313
-
Fungal biogeography. Global diversity and geography of soil fungi
-
Tedersoo L., et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346:1256688.
-
(2014)
Science
, vol.346
, pp. 1256688
-
-
Tedersoo, L.1
-
7
-
-
84922891840
-
Mycorrhizal ecology and evolution: the past, the present, and the future
-
van der Heijden M.G., et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015, 205:1406-1423.
-
(2015)
New Phytol.
, vol.205
, pp. 1406-1423
-
-
van der Heijden, M.G.1
-
8
-
-
0035675837
-
Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing
-
Fuqua C., et al. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 2001, 35:439-468.
-
(2001)
Annu. Rev. Genet.
, vol.35
, pp. 439-468
-
-
Fuqua, C.1
-
9
-
-
84957079872
-
N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria
-
Springer, P. Karlovsky (Ed.)
-
Ferluga S., et al. N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. Secondary Metabolites in Soil Ecology 2008, 69-92. Springer. P. Karlovsky (Ed.).
-
(2008)
Secondary Metabolites in Soil Ecology
, pp. 69-92
-
-
Ferluga, S.1
-
10
-
-
84881467526
-
Chemical signaling between plants and plant-pathogenic bacteria
-
Venturi V., Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2013, 51:17-37.
-
(2013)
Annu. Rev. Phytopathol.
, vol.51
, pp. 17-37
-
-
Venturi, V.1
Fuqua, C.2
-
11
-
-
84940462928
-
Languages and dialects: bacterial communication beyond homoserine lactones
-
Brameyer S., et al. Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol. 2015, 23:521-523.
-
(2015)
Trends Microbiol.
, vol.23
, pp. 521-523
-
-
Brameyer, S.1
-
12
-
-
84938771395
-
The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators
-
Ryan R.P., et al. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015, 11:e1004986.
-
(2015)
PLoS Pathog.
, vol.11
, pp. e1004986
-
-
Ryan, R.P.1
-
13
-
-
84948434101
-
Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan
-
Kakkar A., et al. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J. Exp. Bot. 2015, 66:6697-6714.
-
(2015)
J. Exp. Bot.
, vol.66
, pp. 6697-6714
-
-
Kakkar, A.1
-
14
-
-
0037123780
-
Small talk. Cell-to-cell communication in bacteria
-
Bassler B.L. Small talk. Cell-to-cell communication in bacteria. Cell 2002, 109:421-424.
-
(2002)
Cell
, vol.109
, pp. 421-424
-
-
Bassler, B.L.1
-
15
-
-
84964592944
-
Peptide conversations in Gram-positive bacteria
-
Published online September 8, 2014
-
Monnet V., et al. Peptide conversations in Gram-positive bacteria. Crit. Rev. Microbiol. 2014, Published online September 8, 2014. 10.3109/1040841X.2014.948804.
-
(2014)
Crit. Rev. Microbiol.
-
-
Monnet, V.1
-
16
-
-
84902536156
-
Microbiological effects of sublethal levels of antibiotics
-
Andersson D.I., Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12:465-478.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 465-478
-
-
Andersson, D.I.1
Hughes, D.2
-
17
-
-
79956153033
-
The social network: deciphering fungal language
-
Leeder A.C., et al. The social network: deciphering fungal language. Nat. Rev. Microbiol. 2011, 9:440-451.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 440-451
-
-
Leeder, A.C.1
-
18
-
-
84455170370
-
Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists
-
Frey-Klett P., et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 2011, 75:583-609.
-
(2011)
Microbiol. Mol. Biol. Rev.
, vol.75
, pp. 583-609
-
-
Frey-Klett, P.1
-
19
-
-
84928215770
-
Role of bacterial volatile compounds in bacterial biology
-
Audrain B., et al. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 2015, 39:222-233.
-
(2015)
FEMS Microbiol. Rev.
, vol.39
, pp. 222-233
-
-
Audrain, B.1
-
20
-
-
84945480936
-
Volatile affairs in microbial interactions
-
Schmidt R., et al. Volatile affairs in microbial interactions. ISME J. 2015, 9:2329-2335.
-
(2015)
ISME J.
, vol.9
, pp. 2329-2335
-
-
Schmidt, R.1
-
21
-
-
84880078845
-
Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health
-
Bitas V., et al. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact. 2013, 26:835-843.
-
(2013)
Mol. Plant Microbe Interact.
, vol.26
, pp. 835-843
-
-
Bitas, V.1
-
22
-
-
84922645582
-
Engineering the plant rhizosphere
-
Zhang Y., et al. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 2015, 32:136-142.
-
(2015)
Curr. Opin. Biotechnol.
, vol.32
, pp. 136-142
-
-
Zhang, Y.1
-
23
-
-
75749131070
-
The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots
-
Downie J.A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 2010, 34:150-170.
-
(2010)
FEMS Microbiol. Rev.
, vol.34
, pp. 150-170
-
-
Downie, J.A.1
-
24
-
-
84876379435
-
Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants
-
Oldroyd G.E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11:252-263.
-
(2013)
Nat. Rev. Microbiol.
, vol.11
, pp. 252-263
-
-
Oldroyd, G.E.1
-
25
-
-
0001233870
-
Flavones induce expression of nodulation genes in Rhizobium
-
Redmond J.W., et al. Flavones induce expression of nodulation genes in Rhizobium. Nature 1986, 323:632-635.
-
(1986)
Nature
, vol.323
, pp. 632-635
-
-
Redmond, J.W.1
-
26
-
-
0000474765
-
The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA,B,C genes
-
Rossen L., et al. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA,B,C genes. EMBO J. 1985, 4:3369-3373.
-
(1985)
EMBO J.
, vol.4
, pp. 3369-3373
-
-
Rossen, L.1
-
27
-
-
0025361205
-
Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal
-
Lerouge P., et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990, 344:781-784.
-
(1990)
Nature
, vol.344
, pp. 781-784
-
-
Lerouge, P.1
-
28
-
-
84938690136
-
Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses
-
Limpens E., et al. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu. Rev. Phytopathol. 2015, 53:311-334.
-
(2015)
Annu. Rev. Phytopathol.
, vol.53
, pp. 311-334
-
-
Limpens, E.1
-
29
-
-
80455174952
-
The rules of engagement in the legume-rhizobial symbiosis
-
Oldroyd G.E., et al. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 2011, 45:119-144.
-
(2011)
Annu. Rev. Genet.
, vol.45
, pp. 119-144
-
-
Oldroyd, G.E.1
-
30
-
-
52049107644
-
Arbuscular mycorrhiza: the mother of plant root endosymbioses
-
Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6:763-775.
-
(2008)
Nat. Rev. Microbiol.
, vol.6
, pp. 763-775
-
-
Parniske, M.1
-
31
-
-
78650994503
-
Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza
-
Maillet F., et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011, 469:58-63.
-
(2011)
Nature
, vol.469
, pp. 58-63
-
-
Maillet, F.1
-
32
-
-
84881611781
-
Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis
-
Nadal M., Paszkowski U. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 2013, 16:473-479.
-
(2013)
Curr. Opin. Plant Biol.
, vol.16
, pp. 473-479
-
-
Nadal, M.1
Paszkowski, U.2
-
33
-
-
84873128093
-
The biology of strigolactones
-
Ruyter-Spira C., et al. The biology of strigolactones. Trends Plant Sci. 2013, 18:72-83.
-
(2013)
Trends Plant Sci.
, vol.18
, pp. 72-83
-
-
Ruyter-Spira, C.1
-
34
-
-
84895874825
-
Signaling events during initiation of arbuscular mycorrhizal symbiosis
-
Schmitz A.M., Harrison M.J. Signaling events during initiation of arbuscular mycorrhizal symbiosis. J. Integr. Plant Biol. 2014, 56:250-261.
-
(2014)
J. Integr. Plant Biol.
, vol.56
, pp. 250-261
-
-
Schmitz, A.M.1
Harrison, M.J.2
-
35
-
-
20444471142
-
Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
-
Akiyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
-
(2005)
Nature
, vol.435
, pp. 824-827
-
-
Akiyama, K.1
-
36
-
-
79953041816
-
Signal integration in the control of shoot branching
-
Domagalska M.A., Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011, 12:211-221.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 211-221
-
-
Domagalska, M.A.1
Leyser, O.2
-
37
-
-
84906065976
-
Strigolactones and the control of plant development: lessons from shoot branching
-
Waldie T., et al. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 2014, 79:607-622.
-
(2014)
Plant J.
, vol.79
, pp. 607-622
-
-
Waldie, T.1
-
38
-
-
77954962842
-
The strigolactone story
-
Xie X., et al. The strigolactone story. Annu. Rev. Phytopathol. 2010, 48:93-117.
-
(2010)
Annu. Rev. Phytopathol.
, vol.48
, pp. 93-117
-
-
Xie, X.1
-
39
-
-
84870490104
-
A GRAS-type transcription factor with a specific function in mycorrhizal signaling
-
Gobbato E., et al. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr. Biol. 2012, 22:2236-2241.
-
(2012)
Curr. Biol.
, vol.22
, pp. 2236-2241
-
-
Gobbato, E.1
-
40
-
-
84870544452
-
A common signaling process that promotes mycorrhizal and oomycete colonization of plants
-
Wang E., et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 2012, 22:2242-2246.
-
(2012)
Curr. Biol.
, vol.22
, pp. 2242-2246
-
-
Wang, E.1
-
41
-
-
79551545344
-
Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation
-
Liu W., et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011, 7:e1001261.
-
(2011)
PLoS Pathog.
, vol.7
, pp. e1001261
-
-
Liu, W.1
-
42
-
-
0027957161
-
Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators
-
Fuqua W.C., et al. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176:269-275.
-
(1994)
J. Bacteriol.
, vol.176
, pp. 269-275
-
-
Fuqua, W.C.1
-
43
-
-
1342325734
-
Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions
-
Newton J.A., Fray R.G. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 2004, 6:213-224.
-
(2004)
Cell Microbiol.
, vol.6
, pp. 213-224
-
-
Newton, J.A.1
Fray, R.G.2
-
44
-
-
0242592425
-
Quorum sensing in plant-pathogenic bacteria
-
Von Bodman S.B., et al. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2003, 41:455-482.
-
(2003)
Annu. Rev. Phytopathol.
, vol.41
, pp. 455-482
-
-
Von Bodman, S.B.1
-
45
-
-
3042723520
-
Plant responses to bacterial quorum sensing signals
-
Bauer W.D., Mathesius U. Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 2004, 7:429-433.
-
(2004)
Curr. Opin. Plant Biol.
, vol.7
, pp. 429-433
-
-
Bauer, W.D.1
Mathesius, U.2
-
46
-
-
28844448581
-
L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti
-
Keshavan N.D., et al. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 2005, 187:8427-8436.
-
(2005)
J. Bacteriol.
, vol.187
, pp. 8427-8436
-
-
Keshavan, N.D.1
-
47
-
-
84875249804
-
A novel widespread interkingdom signaling circuit
-
Gonzalez J.F., Venturi V. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 2013, 18:167-174.
-
(2013)
Trends Plant Sci.
, vol.18
, pp. 167-174
-
-
Gonzalez, J.F.1
Venturi, V.2
-
48
-
-
79960078824
-
Bacterial subfamily of LuxR regulators that respond to plant compounds
-
Subramoni S., et al. Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl. Environ. Microbiol. 2011, 77:4579-4588.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 4579-4588
-
-
Subramoni, S.1
-
49
-
-
77549083444
-
Plant volatiles: recent advances and future perspectives
-
Dudareva N., et al. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25:417-440.
-
(2006)
Crit. Rev. Plant Sci.
, vol.25
, pp. 417-440
-
-
Dudareva, N.1
-
50
-
-
17144391843
-
Recruitment of entomopathogenic nematodes by insect-damaged maize roots
-
Rasmann S., et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434:732-737.
-
(2005)
Nature
, vol.434
, pp. 732-737
-
-
Rasmann, S.1
-
51
-
-
69449106381
-
Restoring a maize root signal that attracts insect-killing nematodes to control a major pest
-
Degenhardt J., et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13213-13218.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13213-13218
-
-
Degenhardt, J.1
-
52
-
-
84884814594
-
Mycorrhiza-induced resistance: more than the sum of its parts?
-
Cameron D.D., et al. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 2013, 18:539-545.
-
(2013)
Trends Plant Sci.
, vol.18
, pp. 539-545
-
-
Cameron, D.D.1
-
53
-
-
84905500401
-
Induced systemic resistance by beneficial microbes
-
Pieterse C.M., et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52:347-375.
-
(2014)
Annu. Rev. Phytopathol.
, vol.52
, pp. 347-375
-
-
Pieterse, C.M.1
-
54
-
-
77955659440
-
Induced systemic resistance and plant responses to fungal biocontrol agents
-
Shoresh M., et al. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48:21-43.
-
(2010)
Annu. Rev. Phytopathol.
, vol.48
, pp. 21-43
-
-
Shoresh, M.1
-
56
-
-
65649123807
-
Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens
-
Boller T., He S.Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009, 324:742-744.
-
(2009)
Science
, vol.324
, pp. 742-744
-
-
Boller, T.1
He, S.Y.2
-
57
-
-
77953181003
-
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns
-
Millet Y.A., et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010, 22:973-990.
-
(2010)
Plant Cell
, vol.22
, pp. 973-990
-
-
Millet, Y.A.1
-
58
-
-
65349121783
-
Networking by small-molecule hormones in plant immunity
-
Pieterse C.M., et al. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5:308-316.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 308-316
-
-
Pieterse, C.M.1
-
59
-
-
84890437917
-
Costs and benefits of hormone regulated plant defences
-
Vos I.A., et al. Costs and benefits of hormone regulated plant defences. Plant Pathol. 2013, 62:43-55.
-
(2013)
Plant Pathol.
, vol.62
, pp. 43-55
-
-
Vos, I.A.1
-
60
-
-
34547215634
-
Systemic acquired resistance
-
Conrath U. Systemic acquired resistance. Plant Signal. Behav. 2006, 1:179-184.
-
(2006)
Plant Signal. Behav.
, vol.1
, pp. 179-184
-
-
Conrath, U.1
-
61
-
-
84937518360
-
The 'prime-ome': towards a holistic approach to priming
-
Balmer A., et al. The 'prime-ome': towards a holistic approach to priming. Trends Plant Sci. 2015, 20:443-452.
-
(2015)
Trends Plant Sci.
, vol.20
, pp. 443-452
-
-
Balmer, A.1
-
62
-
-
84926998148
-
Microbial priming of plant and animal immunity: symbionts as developmental signals
-
Selosse M.A., et al. Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol. 2014, 22:607-613.
-
(2014)
Trends Microbiol.
, vol.22
, pp. 607-613
-
-
Selosse, M.A.1
-
63
-
-
84935012192
-
Reconsidering mutualistic plant-fungal interactions through the lens of effector biology
-
Plett J.M., Martin F. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 2015, 26:45-50.
-
(2015)
Curr. Opin. Plant Biol.
, vol.26
, pp. 45-50
-
-
Plett, J.M.1
Martin, F.2
-
64
-
-
84901397183
-
Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes
-
Plett J.M., et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8299-8304.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 8299-8304
-
-
Plett, J.M.1
-
65
-
-
79960732184
-
A secreted effector protein of Laccaria bicolor is required for symbiosis development
-
Plett J.M., et al. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 2011, 21:1197-1203.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1197-1203
-
-
Plett, J.M.1
-
66
-
-
79960710804
-
A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy
-
Kloppholz S., et al. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 2011, 21:1204-1209.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1204-1209
-
-
Kloppholz, S.1
-
67
-
-
84862312680
-
Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes
-
Hartmann A., Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol. 2012, 38:704-713.
-
(2012)
J. Chem. Ecol.
, vol.38
, pp. 704-713
-
-
Hartmann, A.1
Schikora, A.2
-
68
-
-
0037418003
-
Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals
-
Mathesius U., et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:1444-1449.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 1444-1449
-
-
Mathesius, U.1
-
69
-
-
56649118968
-
Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere
-
von Rad U., et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 2008, 229:73-85.
-
(2008)
Planta
, vol.229
, pp. 73-85
-
-
von Rad, U.1
-
70
-
-
51249091647
-
N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana
-
Ortiz-Castro R., et al. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 2008, 31:1497-1509.
-
(2008)
Plant Cell Environ.
, vol.31
, pp. 1497-1509
-
-
Ortiz-Castro, R.1
-
71
-
-
84905046877
-
N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway
-
Schenk S.T., et al. N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 2014, 26:2708-2723.
-
(2014)
Plant Cell
, vol.26
, pp. 2708-2723
-
-
Schenk, S.T.1
-
72
-
-
80455173526
-
N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6
-
Schikora A., et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 2011, 157:1407-1418.
-
(2011)
Plant Physiol.
, vol.157
, pp. 1407-1418
-
-
Schikora, A.1
-
73
-
-
84890797493
-
N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant
-
Sieper T., et al. N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol. 2014, 201:545-555.
-
(2014)
New Phytol.
, vol.201
, pp. 545-555
-
-
Sieper, T.1
-
74
-
-
84962013878
-
Quorum quenching: role in nature and applied developments
-
Grandclément C., et al. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 2016, 40:86-116.
-
(2016)
FEMS Microbiol. Rev.
, vol.40
, pp. 86-116
-
-
Grandclément, C.1
-
75
-
-
79955553268
-
Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants
-
Ortiz-Castro R., et al. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7253-7258.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7253-7258
-
-
Ortiz-Castro, R.1
-
76
-
-
84938802634
-
Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions
-
Xu J., et al. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biol. 2015, 15:10.
-
(2015)
BMC Plant Biol.
, vol.15
, pp. 10
-
-
Xu, J.1
-
77
-
-
0141788361
-
Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0
-
Iavicoli A., et al. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 2003, 16:851-858.
-
(2003)
Mol. Plant Microbe Interact.
, vol.16
, pp. 851-858
-
-
Iavicoli, A.1
-
78
-
-
84858973963
-
Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens
-
Weller D.M., et al. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 2012, 102:403-412.
-
(2012)
Phytopathology
, vol.102
, pp. 403-412
-
-
Weller, D.M.1
-
79
-
-
54949109345
-
2,4-diacetylphloroglucinol alters plant root development
-
Brazelton J.N., et al. 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant Microbe Interact. 2008, 21:1349-1358.
-
(2008)
Mol. Plant Microbe Interact.
, vol.21
, pp. 1349-1358
-
-
Brazelton, J.N.1
-
80
-
-
84896788344
-
Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis
-
Ortiz-Castro R., et al. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol. Plant Microbe Interact. 2014, 27:364-378.
-
(2014)
Mol. Plant Microbe Interact.
, vol.27
, pp. 364-378
-
-
Ortiz-Castro, R.1
-
81
-
-
84952048436
-
Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens
-
Published online September 3, 2015
-
Clifford J.C., et al. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens. Environ. Microbiol. 2015, Published online September 3, 2015. 10.1111/1462-2920.13043.
-
(2015)
Environ. Microbiol.
-
-
Clifford, J.C.1
-
82
-
-
13944252786
-
Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots
-
Maurhofer M., et al. Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl. Environ. Microbiol. 2004, 70:1990-1998.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 1990-1998
-
-
Maurhofer, M.1
-
83
-
-
84874701921
-
Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp
-
Mavrodi D.V., et al. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ. Microbiol. 2013, 15:675-686.
-
(2013)
Environ. Microbiol.
, vol.15
, pp. 675-686
-
-
Mavrodi, D.V.1
-
84
-
-
84930799613
-
Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens
-
Powers M.J., et al. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J. Bacteriol. 2015, 197:2129-2138.
-
(2015)
J. Bacteriol.
, vol.197
, pp. 2129-2138
-
-
Powers, M.J.1
-
85
-
-
84856719186
-
The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges
-
Bailly A., Weisskopf L. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal. Behav. 2012, 7:79-85.
-
(2012)
Plant Signal. Behav.
, vol.7
, pp. 79-85
-
-
Bailly, A.1
Weisskopf, L.2
-
86
-
-
84881335006
-
Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles
-
Farag M.A., et al. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 2013, 39:1007-1018.
-
(2013)
J. Chem. Ecol.
, vol.39
, pp. 1007-1018
-
-
Farag, M.A.1
-
87
-
-
84943631242
-
Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses
-
Zamioudis C., et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015, 84:309-322.
-
(2015)
Plant J.
, vol.84
, pp. 309-322
-
-
Zamioudis, C.1
-
88
-
-
0345352734
-
Bacterial volatiles promote growth in Arabidopsis
-
Ryu C.M., et al. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4927-4932.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 4927-4932
-
-
Ryu, C.M.1
-
89
-
-
1642424373
-
Bacterial volatiles induce systemic resistance in Arabidopsis
-
Ryu C.M., et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004, 134:1017-1026.
-
(2004)
Plant Physiol.
, vol.134
, pp. 1017-1026
-
-
Ryu, C.M.1
-
90
-
-
33746264037
-
GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco
-
Han S.H., et al. GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant Microbe Interact. 2006, 19:924-930.
-
(2006)
Mol. Plant Microbe Interact.
, vol.19
, pp. 924-930
-
-
Han, S.H.1
-
91
-
-
84896736910
-
Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
-
D'Alessandro M., et al. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 2014, 37:813-826.
-
(2014)
Plant Cell Environ.
, vol.37
, pp. 813-826
-
-
D'Alessandro, M.1
-
92
-
-
80055079734
-
Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions
-
Blom D., et al. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 2011, 13:3047-3058.
-
(2011)
Environ. Microbiol.
, vol.13
, pp. 3047-3058
-
-
Blom, D.1
-
93
-
-
84939271099
-
The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling
-
Bailly A., et al. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J. 2014, 80:758-771.
-
(2014)
Plant J.
, vol.80
, pp. 758-771
-
-
Bailly, A.1
-
94
-
-
84923366786
-
Indole is an essential herbivore-induced volatile priming signal in maize
-
Erb M., et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 2015, 6:6273.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6273
-
-
Erb, M.1
-
95
-
-
84881370016
-
Production of bioactive volatiles by different Burkholderia ambifaria strains
-
Groenhagen U., et al. Production of bioactive volatiles by different Burkholderia ambifaria strains. J. Chem. Ecol. 2013, 39:892-906.
-
(2013)
J. Chem. Ecol.
, vol.39
, pp. 892-906
-
-
Groenhagen, U.1
-
96
-
-
84926418280
-
Bioprospecting bacterial and fungal volatiles for sustainable agriculture
-
Kanchiswamy C.N., et al. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 2015, 20:206-211.
-
(2015)
Trends Plant Sci.
, vol.20
, pp. 206-211
-
-
Kanchiswamy, C.N.1
-
97
-
-
84903950527
-
Indole-3-acetic acid in plant-microbe interactions
-
Duca D., et al. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 2014, 106:85-125.
-
(2014)
Antonie Van Leeuwenhoek
, vol.106
, pp. 85-125
-
-
Duca, D.1
-
98
-
-
84911368628
-
Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense
-
Ludwig-Muller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J. Plant Physiol. 2015, 172:4-12.
-
(2015)
J. Plant Physiol.
, vol.172
, pp. 4-12
-
-
Ludwig-Muller, J.1
-
99
-
-
70450195181
-
The role of microbial signals in plant growth and development
-
Ortiz-Castro R., et al. The role of microbial signals in plant growth and development. Plant Signal. Behav. 2009, 4:701-712.
-
(2009)
Plant Signal. Behav.
, vol.4
, pp. 701-712
-
-
Ortiz-Castro, R.1
-
100
-
-
34250331207
-
Indole-3-acetic acid in microbial and microorganism-plant signaling
-
Spaepen S., et al. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31:425-448.
-
(2007)
FEMS Microbiol. Rev.
, vol.31
, pp. 425-448
-
-
Spaepen, S.1
-
101
-
-
84937932044
-
Conserved nematode signalling molecules elicit plant defenses and pathogen resistance
-
Manosalva P., et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 2015, 6:7795.
-
(2015)
Nat. Commun.
, vol.6
, pp. 7795
-
-
Manosalva, P.1
-
102
-
-
84922765696
-
Interplant signalling through hyphal networks
-
Johnson D., Gilbert L. Interplant signalling through hyphal networks. New Phytol. 2015, 205:1448-1453.
-
(2015)
New Phytol.
, vol.205
, pp. 1448-1453
-
-
Johnson, D.1
Gilbert, L.2
-
103
-
-
84893222390
-
Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants
-
Song Y.Y., et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 2014, 4:3915.
-
(2014)
Sci. Rep.
, vol.4
, pp. 3915
-
-
Song, Y.Y.1
-
104
-
-
84877643132
-
Structure and functions of the bacterial microbiota of plants
-
Bulgarelli D., et al. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64:807-838.
-
(2013)
Annu. Rev. Plant Biol.
, vol.64
, pp. 807-838
-
-
Bulgarelli, D.1
-
106
-
-
84875368851
-
Microbial metabolic exchange in 3D
-
Watrous J.D., et al. Microbial metabolic exchange in 3D. ISME J. 2013, 7:770-780.
-
(2013)
ISME J.
, vol.7
, pp. 770-780
-
-
Watrous, J.D.1
-
107
-
-
84926245612
-
Structure and function of the bacterial root microbiota in wild and domesticated barley
-
Bulgarelli D., et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17:392-403.
-
(2015)
Cell Host Microbe
, vol.17
, pp. 392-403
-
-
Bulgarelli, D.1
-
108
-
-
77953177409
-
Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry
-
Rochat L., et al. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol. Plant Microbe Interact. 2010, 23:949-961.
-
(2010)
Mol. Plant Microbe Interact.
, vol.23
, pp. 949-961
-
-
Rochat, L.1
-
109
-
-
84939825194
-
Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
-
Lebeis S.L., et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015, 349:860-864.
-
(2015)
Science
, vol.349
, pp. 860-864
-
-
Lebeis, S.L.1
-
110
-
-
84937046566
-
Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity
-
Published online July 16, 2015
-
Chung J.H., et al. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 2015, Published online July 16, 2015. 10.1007/s11103-015-0344-8.
-
(2015)
Plant Mol. Biol.
-
-
Chung, J.H.1
|