메뉴 건너뛰기




Volumn 21, Issue 3, 2016, Pages 187-198

Signaling in the Rhizosphere

Author keywords

Microbiome; Microorganism; Molecule; Plant; Rhizosphere; Signaling

Indexed keywords

BIOLOGICAL MODEL; MICROBIOLOGY; MICROFLORA; PLANT; RHIZOSPHERE; SIGNAL TRANSDUCTION;

EID: 84959333110     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2016.01.005     Document Type: Review
Times cited : (450)

References (110)
  • 1
    • 84950291119 scopus 로고    scopus 로고
    • Functional overlap of the Arabidopsis leaf and root microbiota
    • Bai Y., et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 2015, 528:364-369.
    • (2015) Nature , vol.528 , pp. 364-369
    • Bai, Y.1
  • 2
    • 84864460264 scopus 로고    scopus 로고
    • Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota
    • Bulgarelli D., et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012, 488:91-95.
    • (2012) Nature , vol.488 , pp. 91-95
    • Bulgarelli, D.1
  • 3
    • 84864460685 scopus 로고    scopus 로고
    • Defining the core Arabidopsis thaliana root microbiome
    • Lundberg D.S., et al. Defining the core Arabidopsis thaliana root microbiome. Nature 2012, 488:86-90.
    • (2012) Nature , vol.488 , pp. 86-90
    • Lundberg, D.S.1
  • 4
    • 84881233841 scopus 로고    scopus 로고
    • The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms
    • Mendes R., et al. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37:634-663.
    • (2013) FEMS Microbiol. Rev. , vol.37 , pp. 634-663
    • Mendes, R.1
  • 5
    • 84942197127 scopus 로고    scopus 로고
    • Metatranscriptomic census of active protists in soils
    • Geisen S., et al. Metatranscriptomic census of active protists in soils. ISME J. 2015, 9:2178-2190.
    • (2015) ISME J. , vol.9 , pp. 2178-2190
    • Geisen, S.1
  • 6
    • 84914142313 scopus 로고    scopus 로고
    • Fungal biogeography. Global diversity and geography of soil fungi
    • Tedersoo L., et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 2014, 346:1256688.
    • (2014) Science , vol.346 , pp. 1256688
    • Tedersoo, L.1
  • 7
    • 84922891840 scopus 로고    scopus 로고
    • Mycorrhizal ecology and evolution: the past, the present, and the future
    • van der Heijden M.G., et al. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015, 205:1406-1423.
    • (2015) New Phytol. , vol.205 , pp. 1406-1423
    • van der Heijden, M.G.1
  • 8
    • 0035675837 scopus 로고    scopus 로고
    • Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing
    • Fuqua C., et al. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet. 2001, 35:439-468.
    • (2001) Annu. Rev. Genet. , vol.35 , pp. 439-468
    • Fuqua, C.1
  • 9
    • 84957079872 scopus 로고    scopus 로고
    • N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria
    • Springer, P. Karlovsky (Ed.)
    • Ferluga S., et al. N-acyl homoserine lactone quorum sensing in Gram-negative rhizobacteria. Secondary Metabolites in Soil Ecology 2008, 69-92. Springer. P. Karlovsky (Ed.).
    • (2008) Secondary Metabolites in Soil Ecology , pp. 69-92
    • Ferluga, S.1
  • 10
    • 84881467526 scopus 로고    scopus 로고
    • Chemical signaling between plants and plant-pathogenic bacteria
    • Venturi V., Fuqua C. Chemical signaling between plants and plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2013, 51:17-37.
    • (2013) Annu. Rev. Phytopathol. , vol.51 , pp. 17-37
    • Venturi, V.1    Fuqua, C.2
  • 11
    • 84940462928 scopus 로고    scopus 로고
    • Languages and dialects: bacterial communication beyond homoserine lactones
    • Brameyer S., et al. Languages and dialects: bacterial communication beyond homoserine lactones. Trends Microbiol. 2015, 23:521-523.
    • (2015) Trends Microbiol. , vol.23 , pp. 521-523
    • Brameyer, S.1
  • 12
    • 84938771395 scopus 로고    scopus 로고
    • The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators
    • Ryan R.P., et al. The DSF family of cell-cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog. 2015, 11:e1004986.
    • (2015) PLoS Pathog. , vol.11 , pp. e1004986
    • Ryan, R.P.1
  • 13
    • 84948434101 scopus 로고    scopus 로고
    • Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan
    • Kakkar A., et al. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. J. Exp. Bot. 2015, 66:6697-6714.
    • (2015) J. Exp. Bot. , vol.66 , pp. 6697-6714
    • Kakkar, A.1
  • 14
    • 0037123780 scopus 로고    scopus 로고
    • Small talk. Cell-to-cell communication in bacteria
    • Bassler B.L. Small talk. Cell-to-cell communication in bacteria. Cell 2002, 109:421-424.
    • (2002) Cell , vol.109 , pp. 421-424
    • Bassler, B.L.1
  • 15
    • 84964592944 scopus 로고    scopus 로고
    • Peptide conversations in Gram-positive bacteria
    • Published online September 8, 2014
    • Monnet V., et al. Peptide conversations in Gram-positive bacteria. Crit. Rev. Microbiol. 2014, Published online September 8, 2014. 10.3109/1040841X.2014.948804.
    • (2014) Crit. Rev. Microbiol.
    • Monnet, V.1
  • 16
    • 84902536156 scopus 로고    scopus 로고
    • Microbiological effects of sublethal levels of antibiotics
    • Andersson D.I., Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 2014, 12:465-478.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 465-478
    • Andersson, D.I.1    Hughes, D.2
  • 17
    • 79956153033 scopus 로고    scopus 로고
    • The social network: deciphering fungal language
    • Leeder A.C., et al. The social network: deciphering fungal language. Nat. Rev. Microbiol. 2011, 9:440-451.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 440-451
    • Leeder, A.C.1
  • 18
    • 84455170370 scopus 로고    scopus 로고
    • Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists
    • Frey-Klett P., et al. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol. Mol. Biol. Rev. 2011, 75:583-609.
    • (2011) Microbiol. Mol. Biol. Rev. , vol.75 , pp. 583-609
    • Frey-Klett, P.1
  • 19
    • 84928215770 scopus 로고    scopus 로고
    • Role of bacterial volatile compounds in bacterial biology
    • Audrain B., et al. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev. 2015, 39:222-233.
    • (2015) FEMS Microbiol. Rev. , vol.39 , pp. 222-233
    • Audrain, B.1
  • 20
    • 84945480936 scopus 로고    scopus 로고
    • Volatile affairs in microbial interactions
    • Schmidt R., et al. Volatile affairs in microbial interactions. ISME J. 2015, 9:2329-2335.
    • (2015) ISME J. , vol.9 , pp. 2329-2335
    • Schmidt, R.1
  • 21
    • 84880078845 scopus 로고    scopus 로고
    • Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health
    • Bitas V., et al. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe Interact. 2013, 26:835-843.
    • (2013) Mol. Plant Microbe Interact. , vol.26 , pp. 835-843
    • Bitas, V.1
  • 22
    • 84922645582 scopus 로고    scopus 로고
    • Engineering the plant rhizosphere
    • Zhang Y., et al. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 2015, 32:136-142.
    • (2015) Curr. Opin. Biotechnol. , vol.32 , pp. 136-142
    • Zhang, Y.1
  • 23
    • 75749131070 scopus 로고    scopus 로고
    • The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots
    • Downie J.A. The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol. Rev. 2010, 34:150-170.
    • (2010) FEMS Microbiol. Rev. , vol.34 , pp. 150-170
    • Downie, J.A.1
  • 24
    • 84876379435 scopus 로고    scopus 로고
    • Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants
    • Oldroyd G.E. Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 2013, 11:252-263.
    • (2013) Nat. Rev. Microbiol. , vol.11 , pp. 252-263
    • Oldroyd, G.E.1
  • 25
    • 0001233870 scopus 로고
    • Flavones induce expression of nodulation genes in Rhizobium
    • Redmond J.W., et al. Flavones induce expression of nodulation genes in Rhizobium. Nature 1986, 323:632-635.
    • (1986) Nature , vol.323 , pp. 632-635
    • Redmond, J.W.1
  • 26
    • 0000474765 scopus 로고
    • The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA,B,C genes
    • Rossen L., et al. The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA,B,C genes. EMBO J. 1985, 4:3369-3373.
    • (1985) EMBO J. , vol.4 , pp. 3369-3373
    • Rossen, L.1
  • 27
    • 0025361205 scopus 로고
    • Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal
    • Lerouge P., et al. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990, 344:781-784.
    • (1990) Nature , vol.344 , pp. 781-784
    • Lerouge, P.1
  • 28
    • 84938690136 scopus 로고    scopus 로고
    • Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses
    • Limpens E., et al. Lipochitooligosaccharides modulate plant host immunity to enable endosymbioses. Annu. Rev. Phytopathol. 2015, 53:311-334.
    • (2015) Annu. Rev. Phytopathol. , vol.53 , pp. 311-334
    • Limpens, E.1
  • 29
    • 80455174952 scopus 로고    scopus 로고
    • The rules of engagement in the legume-rhizobial symbiosis
    • Oldroyd G.E., et al. The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 2011, 45:119-144.
    • (2011) Annu. Rev. Genet. , vol.45 , pp. 119-144
    • Oldroyd, G.E.1
  • 30
    • 52049107644 scopus 로고    scopus 로고
    • Arbuscular mycorrhiza: the mother of plant root endosymbioses
    • Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 2008, 6:763-775.
    • (2008) Nat. Rev. Microbiol. , vol.6 , pp. 763-775
    • Parniske, M.1
  • 31
    • 78650994503 scopus 로고    scopus 로고
    • Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza
    • Maillet F., et al. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 2011, 469:58-63.
    • (2011) Nature , vol.469 , pp. 58-63
    • Maillet, F.1
  • 32
    • 84881611781 scopus 로고    scopus 로고
    • Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis
    • Nadal M., Paszkowski U. Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol. 2013, 16:473-479.
    • (2013) Curr. Opin. Plant Biol. , vol.16 , pp. 473-479
    • Nadal, M.1    Paszkowski, U.2
  • 33
    • 84873128093 scopus 로고    scopus 로고
    • The biology of strigolactones
    • Ruyter-Spira C., et al. The biology of strigolactones. Trends Plant Sci. 2013, 18:72-83.
    • (2013) Trends Plant Sci. , vol.18 , pp. 72-83
    • Ruyter-Spira, C.1
  • 34
    • 84895874825 scopus 로고    scopus 로고
    • Signaling events during initiation of arbuscular mycorrhizal symbiosis
    • Schmitz A.M., Harrison M.J. Signaling events during initiation of arbuscular mycorrhizal symbiosis. J. Integr. Plant Biol. 2014, 56:250-261.
    • (2014) J. Integr. Plant Biol. , vol.56 , pp. 250-261
    • Schmitz, A.M.1    Harrison, M.J.2
  • 35
    • 20444471142 scopus 로고    scopus 로고
    • Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi
    • Akiyama K., et al. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 2005, 435:824-827.
    • (2005) Nature , vol.435 , pp. 824-827
    • Akiyama, K.1
  • 36
    • 79953041816 scopus 로고    scopus 로고
    • Signal integration in the control of shoot branching
    • Domagalska M.A., Leyser O. Signal integration in the control of shoot branching. Nat. Rev. Mol. Cell Biol. 2011, 12:211-221.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 211-221
    • Domagalska, M.A.1    Leyser, O.2
  • 37
    • 84906065976 scopus 로고    scopus 로고
    • Strigolactones and the control of plant development: lessons from shoot branching
    • Waldie T., et al. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 2014, 79:607-622.
    • (2014) Plant J. , vol.79 , pp. 607-622
    • Waldie, T.1
  • 38
    • 77954962842 scopus 로고    scopus 로고
    • The strigolactone story
    • Xie X., et al. The strigolactone story. Annu. Rev. Phytopathol. 2010, 48:93-117.
    • (2010) Annu. Rev. Phytopathol. , vol.48 , pp. 93-117
    • Xie, X.1
  • 39
    • 84870490104 scopus 로고    scopus 로고
    • A GRAS-type transcription factor with a specific function in mycorrhizal signaling
    • Gobbato E., et al. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr. Biol. 2012, 22:2236-2241.
    • (2012) Curr. Biol. , vol.22 , pp. 2236-2241
    • Gobbato, E.1
  • 40
    • 84870544452 scopus 로고    scopus 로고
    • A common signaling process that promotes mycorrhizal and oomycete colonization of plants
    • Wang E., et al. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 2012, 22:2242-2246.
    • (2012) Curr. Biol. , vol.22 , pp. 2242-2246
    • Wang, E.1
  • 41
    • 79551545344 scopus 로고    scopus 로고
    • Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation
    • Liu W., et al. Multiple plant surface signals are sensed by different mechanisms in the rice blast fungus for appressorium formation. PLoS Pathog. 2011, 7:e1001261.
    • (2011) PLoS Pathog. , vol.7 , pp. e1001261
    • Liu, W.1
  • 42
    • 0027957161 scopus 로고
    • Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators
    • Fuqua W.C., et al. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J. Bacteriol. 1994, 176:269-275.
    • (1994) J. Bacteriol. , vol.176 , pp. 269-275
    • Fuqua, W.C.1
  • 43
    • 1342325734 scopus 로고    scopus 로고
    • Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions
    • Newton J.A., Fray R.G. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 2004, 6:213-224.
    • (2004) Cell Microbiol. , vol.6 , pp. 213-224
    • Newton, J.A.1    Fray, R.G.2
  • 44
    • 0242592425 scopus 로고    scopus 로고
    • Quorum sensing in plant-pathogenic bacteria
    • Von Bodman S.B., et al. Quorum sensing in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2003, 41:455-482.
    • (2003) Annu. Rev. Phytopathol. , vol.41 , pp. 455-482
    • Von Bodman, S.B.1
  • 45
    • 3042723520 scopus 로고    scopus 로고
    • Plant responses to bacterial quorum sensing signals
    • Bauer W.D., Mathesius U. Plant responses to bacterial quorum sensing signals. Curr. Opin. Plant Biol. 2004, 7:429-433.
    • (2004) Curr. Opin. Plant Biol. , vol.7 , pp. 429-433
    • Bauer, W.D.1    Mathesius, U.2
  • 46
    • 28844448581 scopus 로고    scopus 로고
    • L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti
    • Keshavan N.D., et al. L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J. Bacteriol. 2005, 187:8427-8436.
    • (2005) J. Bacteriol. , vol.187 , pp. 8427-8436
    • Keshavan, N.D.1
  • 47
    • 84875249804 scopus 로고    scopus 로고
    • A novel widespread interkingdom signaling circuit
    • Gonzalez J.F., Venturi V. A novel widespread interkingdom signaling circuit. Trends Plant Sci. 2013, 18:167-174.
    • (2013) Trends Plant Sci. , vol.18 , pp. 167-174
    • Gonzalez, J.F.1    Venturi, V.2
  • 48
    • 79960078824 scopus 로고    scopus 로고
    • Bacterial subfamily of LuxR regulators that respond to plant compounds
    • Subramoni S., et al. Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl. Environ. Microbiol. 2011, 77:4579-4588.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4579-4588
    • Subramoni, S.1
  • 49
    • 77549083444 scopus 로고    scopus 로고
    • Plant volatiles: recent advances and future perspectives
    • Dudareva N., et al. Plant volatiles: recent advances and future perspectives. Crit. Rev. Plant Sci. 2006, 25:417-440.
    • (2006) Crit. Rev. Plant Sci. , vol.25 , pp. 417-440
    • Dudareva, N.1
  • 50
    • 17144391843 scopus 로고    scopus 로고
    • Recruitment of entomopathogenic nematodes by insect-damaged maize roots
    • Rasmann S., et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 2005, 434:732-737.
    • (2005) Nature , vol.434 , pp. 732-737
    • Rasmann, S.1
  • 51
    • 69449106381 scopus 로고    scopus 로고
    • Restoring a maize root signal that attracts insect-killing nematodes to control a major pest
    • Degenhardt J., et al. Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13213-13218.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 13213-13218
    • Degenhardt, J.1
  • 52
    • 84884814594 scopus 로고    scopus 로고
    • Mycorrhiza-induced resistance: more than the sum of its parts?
    • Cameron D.D., et al. Mycorrhiza-induced resistance: more than the sum of its parts?. Trends Plant Sci. 2013, 18:539-545.
    • (2013) Trends Plant Sci. , vol.18 , pp. 539-545
    • Cameron, D.D.1
  • 53
    • 84905500401 scopus 로고    scopus 로고
    • Induced systemic resistance by beneficial microbes
    • Pieterse C.M., et al. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52:347-375.
    • (2014) Annu. Rev. Phytopathol. , vol.52 , pp. 347-375
    • Pieterse, C.M.1
  • 54
    • 77955659440 scopus 로고    scopus 로고
    • Induced systemic resistance and plant responses to fungal biocontrol agents
    • Shoresh M., et al. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu. Rev. Phytopathol. 2010, 48:21-43.
    • (2010) Annu. Rev. Phytopathol. , vol.48 , pp. 21-43
    • Shoresh, M.1
  • 55
  • 56
    • 65649123807 scopus 로고    scopus 로고
    • Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens
    • Boller T., He S.Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 2009, 324:742-744.
    • (2009) Science , vol.324 , pp. 742-744
    • Boller, T.1    He, S.Y.2
  • 57
    • 77953181003 scopus 로고    scopus 로고
    • Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns
    • Millet Y.A., et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010, 22:973-990.
    • (2010) Plant Cell , vol.22 , pp. 973-990
    • Millet, Y.A.1
  • 58
    • 65349121783 scopus 로고    scopus 로고
    • Networking by small-molecule hormones in plant immunity
    • Pieterse C.M., et al. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5:308-316.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 308-316
    • Pieterse, C.M.1
  • 59
    • 84890437917 scopus 로고    scopus 로고
    • Costs and benefits of hormone regulated plant defences
    • Vos I.A., et al. Costs and benefits of hormone regulated plant defences. Plant Pathol. 2013, 62:43-55.
    • (2013) Plant Pathol. , vol.62 , pp. 43-55
    • Vos, I.A.1
  • 60
    • 34547215634 scopus 로고    scopus 로고
    • Systemic acquired resistance
    • Conrath U. Systemic acquired resistance. Plant Signal. Behav. 2006, 1:179-184.
    • (2006) Plant Signal. Behav. , vol.1 , pp. 179-184
    • Conrath, U.1
  • 61
    • 84937518360 scopus 로고    scopus 로고
    • The 'prime-ome': towards a holistic approach to priming
    • Balmer A., et al. The 'prime-ome': towards a holistic approach to priming. Trends Plant Sci. 2015, 20:443-452.
    • (2015) Trends Plant Sci. , vol.20 , pp. 443-452
    • Balmer, A.1
  • 62
    • 84926998148 scopus 로고    scopus 로고
    • Microbial priming of plant and animal immunity: symbionts as developmental signals
    • Selosse M.A., et al. Microbial priming of plant and animal immunity: symbionts as developmental signals. Trends Microbiol. 2014, 22:607-613.
    • (2014) Trends Microbiol. , vol.22 , pp. 607-613
    • Selosse, M.A.1
  • 63
    • 84935012192 scopus 로고    scopus 로고
    • Reconsidering mutualistic plant-fungal interactions through the lens of effector biology
    • Plett J.M., Martin F. Reconsidering mutualistic plant-fungal interactions through the lens of effector biology. Curr. Opin. Plant Biol. 2015, 26:45-50.
    • (2015) Curr. Opin. Plant Biol. , vol.26 , pp. 45-50
    • Plett, J.M.1    Martin, F.2
  • 64
    • 84901397183 scopus 로고    scopus 로고
    • Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes
    • Plett J.M., et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:8299-8304.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 8299-8304
    • Plett, J.M.1
  • 65
    • 79960732184 scopus 로고    scopus 로고
    • A secreted effector protein of Laccaria bicolor is required for symbiosis development
    • Plett J.M., et al. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr. Biol. 2011, 21:1197-1203.
    • (2011) Curr. Biol. , vol.21 , pp. 1197-1203
    • Plett, J.M.1
  • 66
    • 79960710804 scopus 로고    scopus 로고
    • A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy
    • Kloppholz S., et al. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 2011, 21:1204-1209.
    • (2011) Curr. Biol. , vol.21 , pp. 1204-1209
    • Kloppholz, S.1
  • 67
    • 84862312680 scopus 로고    scopus 로고
    • Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes
    • Hartmann A., Schikora A. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol. 2012, 38:704-713.
    • (2012) J. Chem. Ecol. , vol.38 , pp. 704-713
    • Hartmann, A.1    Schikora, A.2
  • 68
    • 0037418003 scopus 로고    scopus 로고
    • Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals
    • Mathesius U., et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:1444-1449.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 1444-1449
    • Mathesius, U.1
  • 69
    • 56649118968 scopus 로고    scopus 로고
    • Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere
    • von Rad U., et al. Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 2008, 229:73-85.
    • (2008) Planta , vol.229 , pp. 73-85
    • von Rad, U.1
  • 70
    • 51249091647 scopus 로고    scopus 로고
    • N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana
    • Ortiz-Castro R., et al. N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ. 2008, 31:1497-1509.
    • (2008) Plant Cell Environ. , vol.31 , pp. 1497-1509
    • Ortiz-Castro, R.1
  • 71
    • 84905046877 scopus 로고    scopus 로고
    • N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway
    • Schenk S.T., et al. N-Acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 2014, 26:2708-2723.
    • (2014) Plant Cell , vol.26 , pp. 2708-2723
    • Schenk, S.T.1
  • 72
    • 80455173526 scopus 로고    scopus 로고
    • N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6
    • Schikora A., et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 2011, 157:1407-1418.
    • (2011) Plant Physiol. , vol.157 , pp. 1407-1418
    • Schikora, A.1
  • 73
    • 84890797493 scopus 로고    scopus 로고
    • N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant
    • Sieper T., et al. N-acyl-homoserine lactone uptake and systemic transport in barley rest upon active parts of the plant. New Phytol. 2014, 201:545-555.
    • (2014) New Phytol. , vol.201 , pp. 545-555
    • Sieper, T.1
  • 74
    • 84962013878 scopus 로고    scopus 로고
    • Quorum quenching: role in nature and applied developments
    • Grandclément C., et al. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 2016, 40:86-116.
    • (2016) FEMS Microbiol. Rev. , vol.40 , pp. 86-116
    • Grandclément, C.1
  • 75
    • 79955553268 scopus 로고    scopus 로고
    • Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants
    • Ortiz-Castro R., et al. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7253-7258.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7253-7258
    • Ortiz-Castro, R.1
  • 76
    • 84938802634 scopus 로고    scopus 로고
    • Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions
    • Xu J., et al. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biol. 2015, 15:10.
    • (2015) BMC Plant Biol. , vol.15 , pp. 10
    • Xu, J.1
  • 77
    • 0141788361 scopus 로고    scopus 로고
    • Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0
    • Iavicoli A., et al. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant Microbe Interact. 2003, 16:851-858.
    • (2003) Mol. Plant Microbe Interact. , vol.16 , pp. 851-858
    • Iavicoli, A.1
  • 78
    • 84858973963 scopus 로고    scopus 로고
    • Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens
    • Weller D.M., et al. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 2012, 102:403-412.
    • (2012) Phytopathology , vol.102 , pp. 403-412
    • Weller, D.M.1
  • 79
    • 54949109345 scopus 로고    scopus 로고
    • 2,4-diacetylphloroglucinol alters plant root development
    • Brazelton J.N., et al. 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant Microbe Interact. 2008, 21:1349-1358.
    • (2008) Mol. Plant Microbe Interact. , vol.21 , pp. 1349-1358
    • Brazelton, J.N.1
  • 80
    • 84896788344 scopus 로고    scopus 로고
    • Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis
    • Ortiz-Castro R., et al. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol. Plant Microbe Interact. 2014, 27:364-378.
    • (2014) Mol. Plant Microbe Interact. , vol.27 , pp. 364-378
    • Ortiz-Castro, R.1
  • 81
    • 84952048436 scopus 로고    scopus 로고
    • Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens
    • Published online September 3, 2015
    • Clifford J.C., et al. Phloroglucinol functions as an intracellular and intercellular chemical messenger influencing gene expression in Pseudomonas protegens. Environ. Microbiol. 2015, Published online September 3, 2015. 10.1111/1462-2920.13043.
    • (2015) Environ. Microbiol.
    • Clifford, J.C.1
  • 82
    • 13944252786 scopus 로고    scopus 로고
    • Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots
    • Maurhofer M., et al. Cross talk between 2,4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Appl. Environ. Microbiol. 2004, 70:1990-1998.
    • (2004) Appl. Environ. Microbiol. , vol.70 , pp. 1990-1998
    • Maurhofer, M.1
  • 83
    • 84874701921 scopus 로고    scopus 로고
    • Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp
    • Mavrodi D.V., et al. Recent insights into the diversity, frequency and ecological roles of phenazines in fluorescent Pseudomonas spp. Environ. Microbiol. 2013, 15:675-686.
    • (2013) Environ. Microbiol. , vol.15 , pp. 675-686
    • Mavrodi, D.V.1
  • 84
    • 84930799613 scopus 로고    scopus 로고
    • Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens
    • Powers M.J., et al. Inhibition of cell differentiation in Bacillus subtilis by Pseudomonas protegens. J. Bacteriol. 2015, 197:2129-2138.
    • (2015) J. Bacteriol. , vol.197 , pp. 2129-2138
    • Powers, M.J.1
  • 85
    • 84856719186 scopus 로고    scopus 로고
    • The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges
    • Bailly A., Weisskopf L. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal. Behav. 2012, 7:79-85.
    • (2012) Plant Signal. Behav. , vol.7 , pp. 79-85
    • Bailly, A.1    Weisskopf, L.2
  • 86
    • 84881335006 scopus 로고    scopus 로고
    • Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles
    • Farag M.A., et al. Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J. Chem. Ecol. 2013, 39:1007-1018.
    • (2013) J. Chem. Ecol. , vol.39 , pp. 1007-1018
    • Farag, M.A.1
  • 87
    • 84943631242 scopus 로고    scopus 로고
    • Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses
    • Zamioudis C., et al. Rhizobacterial volatiles and photosynthesis-related signals coordinate MYB72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses. Plant J. 2015, 84:309-322.
    • (2015) Plant J. , vol.84 , pp. 309-322
    • Zamioudis, C.1
  • 88
    • 0345352734 scopus 로고    scopus 로고
    • Bacterial volatiles promote growth in Arabidopsis
    • Ryu C.M., et al. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4927-4932.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4927-4932
    • Ryu, C.M.1
  • 89
    • 1642424373 scopus 로고    scopus 로고
    • Bacterial volatiles induce systemic resistance in Arabidopsis
    • Ryu C.M., et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 2004, 134:1017-1026.
    • (2004) Plant Physiol. , vol.134 , pp. 1017-1026
    • Ryu, C.M.1
  • 90
    • 33746264037 scopus 로고    scopus 로고
    • GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco
    • Han S.H., et al. GacS-dependent production of 2R,3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant Microbe Interact. 2006, 19:924-930.
    • (2006) Mol. Plant Microbe Interact. , vol.19 , pp. 924-930
    • Han, S.H.1
  • 91
    • 84896736910 scopus 로고    scopus 로고
    • Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions
    • D'Alessandro M., et al. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 2014, 37:813-826.
    • (2014) Plant Cell Environ. , vol.37 , pp. 813-826
    • D'Alessandro, M.1
  • 92
    • 80055079734 scopus 로고    scopus 로고
    • Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions
    • Blom D., et al. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 2011, 13:3047-3058.
    • (2011) Environ. Microbiol. , vol.13 , pp. 3047-3058
    • Blom, D.1
  • 93
    • 84939271099 scopus 로고    scopus 로고
    • The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling
    • Bailly A., et al. The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J. 2014, 80:758-771.
    • (2014) Plant J. , vol.80 , pp. 758-771
    • Bailly, A.1
  • 94
    • 84923366786 scopus 로고    scopus 로고
    • Indole is an essential herbivore-induced volatile priming signal in maize
    • Erb M., et al. Indole is an essential herbivore-induced volatile priming signal in maize. Nat. Commun. 2015, 6:6273.
    • (2015) Nat. Commun. , vol.6 , pp. 6273
    • Erb, M.1
  • 95
    • 84881370016 scopus 로고    scopus 로고
    • Production of bioactive volatiles by different Burkholderia ambifaria strains
    • Groenhagen U., et al. Production of bioactive volatiles by different Burkholderia ambifaria strains. J. Chem. Ecol. 2013, 39:892-906.
    • (2013) J. Chem. Ecol. , vol.39 , pp. 892-906
    • Groenhagen, U.1
  • 96
    • 84926418280 scopus 로고    scopus 로고
    • Bioprospecting bacterial and fungal volatiles for sustainable agriculture
    • Kanchiswamy C.N., et al. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 2015, 20:206-211.
    • (2015) Trends Plant Sci. , vol.20 , pp. 206-211
    • Kanchiswamy, C.N.1
  • 97
    • 84903950527 scopus 로고    scopus 로고
    • Indole-3-acetic acid in plant-microbe interactions
    • Duca D., et al. Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 2014, 106:85-125.
    • (2014) Antonie Van Leeuwenhoek , vol.106 , pp. 85-125
    • Duca, D.1
  • 98
    • 84911368628 scopus 로고    scopus 로고
    • Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense
    • Ludwig-Muller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J. Plant Physiol. 2015, 172:4-12.
    • (2015) J. Plant Physiol. , vol.172 , pp. 4-12
    • Ludwig-Muller, J.1
  • 99
    • 70450195181 scopus 로고    scopus 로고
    • The role of microbial signals in plant growth and development
    • Ortiz-Castro R., et al. The role of microbial signals in plant growth and development. Plant Signal. Behav. 2009, 4:701-712.
    • (2009) Plant Signal. Behav. , vol.4 , pp. 701-712
    • Ortiz-Castro, R.1
  • 100
    • 34250331207 scopus 로고    scopus 로고
    • Indole-3-acetic acid in microbial and microorganism-plant signaling
    • Spaepen S., et al. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31:425-448.
    • (2007) FEMS Microbiol. Rev. , vol.31 , pp. 425-448
    • Spaepen, S.1
  • 101
    • 84937932044 scopus 로고    scopus 로고
    • Conserved nematode signalling molecules elicit plant defenses and pathogen resistance
    • Manosalva P., et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 2015, 6:7795.
    • (2015) Nat. Commun. , vol.6 , pp. 7795
    • Manosalva, P.1
  • 102
    • 84922765696 scopus 로고    scopus 로고
    • Interplant signalling through hyphal networks
    • Johnson D., Gilbert L. Interplant signalling through hyphal networks. New Phytol. 2015, 205:1448-1453.
    • (2015) New Phytol. , vol.205 , pp. 1448-1453
    • Johnson, D.1    Gilbert, L.2
  • 103
    • 84893222390 scopus 로고    scopus 로고
    • Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants
    • Song Y.Y., et al. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 2014, 4:3915.
    • (2014) Sci. Rep. , vol.4 , pp. 3915
    • Song, Y.Y.1
  • 104
    • 84877643132 scopus 로고    scopus 로고
    • Structure and functions of the bacterial microbiota of plants
    • Bulgarelli D., et al. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64:807-838.
    • (2013) Annu. Rev. Plant Biol. , vol.64 , pp. 807-838
    • Bulgarelli, D.1
  • 106
    • 84875368851 scopus 로고    scopus 로고
    • Microbial metabolic exchange in 3D
    • Watrous J.D., et al. Microbial metabolic exchange in 3D. ISME J. 2013, 7:770-780.
    • (2013) ISME J. , vol.7 , pp. 770-780
    • Watrous, J.D.1
  • 107
    • 84926245612 scopus 로고    scopus 로고
    • Structure and function of the bacterial root microbiota in wild and domesticated barley
    • Bulgarelli D., et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 2015, 17:392-403.
    • (2015) Cell Host Microbe , vol.17 , pp. 392-403
    • Bulgarelli, D.1
  • 108
    • 77953177409 scopus 로고    scopus 로고
    • Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry
    • Rochat L., et al. Combination of fluorescent reporters for simultaneous monitoring of root colonization and antifungal gene expression by a biocontrol pseudomonad on cereals with flow cytometry. Mol. Plant Microbe Interact. 2010, 23:949-961.
    • (2010) Mol. Plant Microbe Interact. , vol.23 , pp. 949-961
    • Rochat, L.1
  • 109
    • 84939825194 scopus 로고    scopus 로고
    • Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
    • Lebeis S.L., et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 2015, 349:860-864.
    • (2015) Science , vol.349 , pp. 860-864
    • Lebeis, S.L.1
  • 110
    • 84937046566 scopus 로고    scopus 로고
    • Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity
    • Published online July 16, 2015
    • Chung J.H., et al. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 2015, Published online July 16, 2015. 10.1007/s11103-015-0344-8.
    • (2015) Plant Mol. Biol.
    • Chung, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.