메뉴 건너뛰기




Volumn , Issue , 2014, Pages 105-112

Ratings meet reviews, a combined approach to recommend

Author keywords

Cold start problem; Collaborative filtering; Content based filtering

Indexed keywords

EMBEDDED SYSTEMS; RECOMMENDER SYSTEMS;

EID: 84908884026     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2645710.2645728     Document Type: Conference Paper
Times cited : (389)

References (32)
  • 1
    • 77950940282 scopus 로고    scopus 로고
    • Flda: Matrix factorization through latent dirichlet allocation
    • D. Agarwal and B.-C. Chen. flda: Matrix factorization through latent dirichlet allocation. In WSDM, pages 91-100, 2010.
    • (2010) WSDM , pp. 91-100
    • Agarwal, D.1    Chen, B.-C.2
  • 2
    • 14344253490 scopus 로고    scopus 로고
    • Unifying collaborative and content-based filtering
    • J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In ICML, 2004.
    • (2004) ICML
    • Basilico, J.1    Hofmann, T.2
  • 4
    • 79957953803 scopus 로고    scopus 로고
    • Beyond the stars: Improving rating predictions using review text content
    • G. Ganu, N. Elhadad, and A. Marian. Beyond the stars: Improving rating predictions using review text content. In WebDB, 2009.
    • (2009) WebDB
    • Ganu, G.1    Elhadad, N.2    Marian, A.3
  • 5
    • 77956016063 scopus 로고    scopus 로고
    • Social media recommendation based on people and tags
    • I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel. Social media recommendation based on people and tags. In SIGIR, pages 194-201, 2010.
    • (2010) SIGIR , pp. 194-201
    • Guy, I.1    Zwerdling, N.2    Ronen, I.3    Carmel, D.4    Uziel, E.5
  • 6
    • 84893144737 scopus 로고    scopus 로고
    • Unsupervised sentiment analysis with emotional signals
    • X. Hu, J. Tang, H. Gao, and H. Liu. Unsupervised sentiment analysis with emotional signals. In WWW, pages 607-618, 2013.
    • (2013) WWW , pp. 607-618
    • Hu, X.1    Tang, J.2    Gao, H.3    Liu, H.4
  • 7
    • 67049164166 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, pages 263-272, 2008.
    • (2008) ICDM , pp. 263-272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 8
    • 79952432020 scopus 로고    scopus 로고
    • Aspect and sentiment unification model for online review analysis
    • Y. Jo and A. H. Oh. Aspect and sentiment unification model for online review analysis. In WSDM, pages 815-824, 2011.
    • (2011) WSDM , pp. 815-824
    • Jo, Y.1    Oh, A.H.2
  • 9
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. Collaborative filtering with temporal dynamics. In KDD, pages 447-456, 2009.
    • (2009) KDD , pp. 447-456
    • Koren, Y.1
  • 10
    • 82555183095 scopus 로고    scopus 로고
    • Ordrec: An ordinal model for predicting personalized item rating distributions
    • Y. Koren and J. Sill. Ordrec: An ordinal model for predicting personalized item rating distributions. In RecSys, pages 117-124, 2011.
    • (2011) RecSys , pp. 117-124
    • Koren, Y.1    Sill, J.2
  • 11
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • January
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7:76-80, January 2003.
    • (2003) IEEE Internet Computing , vol.7 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 12
    • 84866007229 scopus 로고    scopus 로고
    • A survey of opinion mining and sentiment analysis
    • B. Liu and L. Zhang. A survey of opinion mining and sentiment analysis. In Mining Text Data, pages 415-463. 2012.
    • (2012) Mining Text Data , pp. 415-463
    • Liu, B.1    Zhang, L.2
  • 13
    • 82555195657 scopus 로고    scopus 로고
    • Wisdom of the better few: Cold start recommendation via representative based rating elicitation
    • N. N. Liu, X. Meng, C. Liu, and Q. Yang. Wisdom of the better few: Cold start recommendation via representative based rating elicitation. In RecSys, pages 37-44, 2011.
    • (2011) RecSys , pp. 37-44
    • Liu, N.N.1    Meng, X.2    Liu, C.3    Yang, Q.4
  • 14
    • 84860429931 scopus 로고    scopus 로고
    • Mining web graphs for recommendations
    • H. Ma, I. King, and M. R. Lyu. Mining web graphs for recommendations. IEEE Trans. Knowl. Data Eng., 24(6):1051-1064, 2012.
    • (2012) IEEE Trans. Knowl. Data Eng , vol.24 , Issue.6 , pp. 1051-1064
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 15
    • 79952399179 scopus 로고    scopus 로고
    • Recommender systems with social regularization
    • H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with social regularization. In WSDM, pages 287-296, 2011.
    • (2011) WSDM , pp. 287-296
    • Ma, H.1    Zhou, D.2    Liu, C.3    Lyu, M.R.4    King, I.5
  • 16
    • 84887587513 scopus 로고    scopus 로고
    • Hidden factors and hidden topics: Understanding rating dimensions with review text
    • J. J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimensions with review text. In RecSys, pages 165-172, 2013.
    • (2013) RecSys , pp. 165-172
    • McAuley, J.J.1    Leskovec, J.2
  • 17
    • 0036932094 scopus 로고    scopus 로고
    • Content-boosted collaborative filtering for improved recommendations
    • P. Melville, R. J. Mooney, and R. Nagarajan. Content-boosted collaborative filtering for improved recommendations. In AAAI/IAAI, pages 187-192, 2002.
    • (2002) AAAI/IAAI , pp. 187-192
    • Melville, P.1    Mooney, R.J.2    Nagarajan, R.3
  • 18
    • 84906924686 scopus 로고    scopus 로고
    • Aspect-based opinion mining from product reviews
    • S. Moghaddam and M. Ester. Aspect-based opinion mining from product reviews. In SIGIR, page 1184, 2012.
    • (2012) SIGIR , pp. 1184
    • Moghaddam, S.1    Ester, M.2
  • 21
    • 38349029576 scopus 로고    scopus 로고
    • Content-based recommendation systems
    • M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The Adaptive Web, pages 325-341, 2007.
    • (2007) The Adaptive Web , pp. 325-341
    • Pazzani, M.J.1    Billsus, D.2
  • 22
    • 84867125398 scopus 로고    scopus 로고
    • Collaborative topic regression with social matrix factorization for recommendation systems
    • S. Purushotham and Y. Liu. Collaborative topic regression with social matrix factorization for recommendation systems. In ICML, 2012.
    • (2012) ICML
    • Purushotham, S.1    Liu, Y.2
  • 23
    • 84863614151 scopus 로고    scopus 로고
    • Factorization machines with libfm
    • S. Rendle. Factorization machines with libfm. ACM TIST, 3(3):57, 2012.
    • (2012) ACM TIST , vol.3 , Issue.3 , pp. 57
    • Rendle, S.1
  • 24
    • 84908894804 scopus 로고    scopus 로고
    • Bpr: Bayesian personalized ranking from implicit feedback
    • abs/1205.2618
    • S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. CoRR, abs/1205.2618, 2012.
    • (2012) CoRR
    • Rendle, S.1    Freudenthaler, C.2    Gantner, Z.3    Schmidt-Thieme, L.4
  • 25
    • 48349135120 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In NIPS, 2007.
    • (2007) NIPS
    • Salakhutdinov, R.1    Mnih, A.2
  • 26
    • 56449131205 scopus 로고    scopus 로고
    • Bayesian probabilistic matrix factorization using markov chain monte carlo
    • R. Salakhutdinov and A. Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In ICML, pages 880-887, 2008.
    • (2008) ICML , pp. 880-887
    • Salakhutdinov, R.1    Mnih, A.2
  • 27
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
    • (2001) WWW , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Riedl, J.4
  • 28
    • 0036989477 scopus 로고    scopus 로고
    • Methods and metrics for cold-start recommendations
    • A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for cold-start recommendations. In SIGIR, pages 253-260, 2002.
    • (2002) SIGIR , pp. 253-260
    • Schein, A.I.1    Popescul, A.2    Ungar, L.H.3    Pennock, D.M.4
  • 29
    • 84893070906 scopus 로고    scopus 로고
    • Do social explanations work?: Studying and modeling the effects of social explanations in recommender systems
    • A. Sharma and D. Cosley. Do social explanations work?: Studying and modeling the effects of social explanations in recommender systems. In WWW, pages 1133-1144, 2013.
    • (2013) WWW , pp. 1133-1144
    • Sharma, A.1    Cosley, D.2
  • 30
    • 84859906262 scopus 로고    scopus 로고
    • A joint model of text and aspect ratings for sentiment summarization
    • I. Titov and R. T. McDonald. A joint model of text and aspect ratings for sentiment summarization. In ACL, pages 308-316, 2008.
    • (2008) ACL , pp. 308-316
    • Titov, I.1    McDonald, R.T.2
  • 31
    • 80052666619 scopus 로고    scopus 로고
    • Collaborative topic modeling for recommending scientific articles
    • C. Wang and D. M. Blei. Collaborative topic modeling for recommending scientific articles. In KDD, pages 448-456, 2011.
    • (2011) KDD , pp. 448-456
    • Wang, C.1    Blei, D.M.2
  • 32
    • 82555181744 scopus 로고    scopus 로고
    • Generalizing matrix factorization through flexible regression priors
    • L. Zhang, D. Agarwal, and B.-C. Chen. Generalizing matrix factorization through flexible regression priors. In RecSys, pages 13-20, 2011.
    • (2011) RecSys , pp. 13-20
    • Zhang, L.1    Agarwal, D.2    Chen, B.-C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.