메뉴 건너뛰기




Volumn , Issue , 2008, Pages 83-90

EigenRank: A ranking-oriented approach to collaborative filtering

Author keywords

Collaborative filtering; Random walk; Ranking

Indexed keywords

FORECASTING; INFORMATION RETRIEVAL; INFORMATION SERVICES; RESEARCH AND DEVELOPMENT MANAGEMENT;

EID: 57349097660     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1390334.1390351     Document Type: Conference Paper
Times cited : (273)

References (25)
  • 2
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of UAI 1998, pages 43-52, 1998.
    • (1998) Proceedings of UAI , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 6
    • 0842290958 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. In Proceedings of ICML 1998, pages 170-178, 1998.
    • (1998) Proceedings of ICML , pp. 170-178
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4
  • 8
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A constant time collaborative filtering algorithm
    • K. Y. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2):133-151, 2001.
    • (2001) Information Retrieval , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.Y.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 11
    • 3042829247 scopus 로고    scopus 로고
    • An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms
    • J. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information retrieval, 5(4):287-310, 2002.
    • (2002) Information retrieval , vol.5 , Issue.4 , pp. 287-310
    • Herlocker, J.1    Konstan, J.A.2    Riedl, J.3
  • 12
    • 3042742744 scopus 로고    scopus 로고
    • Latent semantic models for collaborative filtering
    • T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22(1):89-115, 2004.
    • (2004) ACM Trans. Inf. Syst , vol.22 , Issue.1 , pp. 89-115
    • Hofmann, T.1
  • 13
    • 1842637192 scopus 로고    scopus 로고
    • Cumulated gain-based evaluation of ir techniques
    • K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, 2002.
    • (2002) ACM Trans. Inf. Syst , vol.20 , Issue.4 , pp. 422-446
    • Järvelin, K.1    Kekäläinen, J.2
  • 14
    • 80053438862 scopus 로고    scopus 로고
    • Scaling personalized web search
    • G. Jeh and J. Widom. Scaling personalized web search. In Proceedings of WWW 2003, pages 271-279, 2003.
    • (2003) Proceedings of WWW , pp. 271-279
    • Jeh, G.1    Widom, J.2
  • 15
    • 15544377080 scopus 로고    scopus 로고
    • Collaborative filtering with decoupled models for preferences and ratings
    • R. Jin, L. Si, C. Zhai, and J. Callan. Collaborative filtering with decoupled models for preferences and ratings. In Proceedings of CIKM 2003, pages 309-106, 2003.
    • (2003) Proceedings of CIKM , pp. 309-106
    • Jin, R.1    Si, L.2    Zhai, C.3    Callan, J.4
  • 16
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of SIGKDD 2002, pages 133-142, 2002.
    • (2002) Proceedings of SIGKDD , pp. 133-142
    • Joachims, T.1
  • 18
    • 0037252945 scopus 로고    scopus 로고
    • Amazon.com recommendations: Item-to-item collaborative filtering
    • G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76-80, 2003.
    • (2003) IEEE Internet Computing , vol.7 , Issue.1 , pp. 76-80
    • Linden, G.1    Smith, B.2    York, J.3
  • 19
    • 36448972659 scopus 로고    scopus 로고
    • Effective missing data prediction for collaborative filtering
    • H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering. In Proc. of SIGIR 2007, pages 39-46, 2007.
    • (2007) Proc. of SIGIR , pp. 39-46
    • Ma, H.1    King, I.2    Lyu, M.R.3
  • 21
    • 0001391984 scopus 로고    scopus 로고
    • Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach
    • D. M. Pennock, E. Horvitz, S. Lawrence, and C. L. Giles. Collaborative filtering by personality diagnosis: A hybrid memory and model-based approach. In Proc. of UAI, pages 473-480, 2000.
    • (2000) Proc. of UAI , pp. 473-480
    • Pennock, D.M.1    Horvitz, E.2    Lawrence, S.3    Giles, C.L.4
  • 23
    • 0038546788 scopus 로고    scopus 로고
    • The intelligent surfer: Probabilistic combination of link and content information in pagerank
    • M. Richardson and P. Domingos. The intelligent surfer: Probabilistic combination of link and content information in pagerank. In Proceedings of NIPS 2001, pages 1441-1448, 2001.
    • (2001) Proceedings of NIPS , pp. 1441-1448
    • Richardson, M.1    Domingos, P.2
  • 24
    • 85052617391 scopus 로고    scopus 로고
    • Item-based collaborative filtering recommendation algorithms
    • B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285-295, 2001.
    • (2001) , pp. 285-295
    • Sarwar, B.M.1    Karypis, G.2    Konstan, J.A.3    Riedl, J.4
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.